
Chapter 7
Ultrafast and Nonlinear Plasmon Dynamics

Markus B. Raschke, Samuel Berweger and Joanna M. Atkin

Abstract The interaction of light with a metal mediated by surface plasmon
polaritons provides for sub-diffraction limited optical confinement and control. While
the relationship of the linear plasmon response to the underlying elementary elec-
tronic excitations of the metal is well understood in general, the corresponding
ultrafast and nonlinear plasmon interactions could provide further enhanced func-
tionalities. However, while the ultrafast and nonlinear optics of metals is an advanced
field, the understanding of the related plasmonic properties is less developed. Here
we discuss ultrafast and nonlinear wave-mixing properties of metals and metallic
nanostructures in terms of the elementary optical interactions related to electronic
band structure, plasmon resonances, and geometric selection rules. These properties
form the fundamental basis of the nonlinear plasmonic light-matter interaction. The
understanding of these fundamental properties, together with the ability to measure
and control the typically fast femtosecond intrinsic and extrinsic dephasing times,
is important for the development of applications such as enhanced nano-imaging,
coherent control of individual quantum systems, strong light-matter interaction and
extreme nonlinear optics, and nano-photonic devices.

Keywords Nonlinear optics · Metal optics · Plasmonics · Ultrafast dynamics

7.1 Electronic Excitation at Metal Surfaces: Surface Modes

7.1.1 Introduction

Optical excitations of electrons at metal surfaces play an important role in a wide
range of fundamental and applied science applications. The elementary electronic
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excitations determine carrier and thermal transport, and surface photo-chemistry
including photocatalysis, with distinct characteristics for planar and nanostructured
metal surfaces. Collective excitations in the form of surface plasmon polaritons
(SPPs) at the boundaries of metallic media permit the tailoring of optical fields
for surface-enhanced spectroscopy and sub-wavelength resolution microscopy, and
have attracted wide attention for their potential for the design of new micro- and
nano-scale photonic devices. The near-field and optical antenna properties of sur-
face plasmon polaritons, in particular, may even open the door for qualitatively new
optical physics in the near-field. This includes new ways to control the light-matter
interaction in quantum systems, negative-index and related meta-materials, or new
nonlinear optical phenomena.

The possibilities and fundamental limitations associated with several of these pro-
posed ideas are linked to the fundamental properties of surface plasmon polaritons.
Excellent books have been devoted to their linear optical properties [1–3]. Here we
will discuss in particular the ultrafast and nonlinear optical properties of surface plas-
mon polaritons, and how they relate to the elementary electronic properties of metals
that ultimately determine the radiative and non-radiative evolution of the plasmon
excitation.

We start with a brief overview of the basic properties of surface waves and plasmon
polaritons and the relevant underlying physics. We then focus on the ultrafast and
nonlinear behaviour, which just as for linear SPPs is a convolution of the intrinsic el-
ementary electronic properties of metals with extrinsic size and geometry-dependent
structural resonances. Ultrafast and nonlinear optics involving SPPs are particularly
sensitive to the combination and relative roles of intrinsic and extrinsic effects. The
goal here is to provide a microscopic discussion of the dynamic processes of SPPs
and the parameters that govern their spectral, spatial, and temporal characteristics
linked to the ultrafast electron dynamics of metals.

The nonlinear SPP response is of interest for the generation of optical frequency
components by parametric generation or nonlinear wave-mixing, optical saturation
and gain, and strong light-matter interaction, taking advantage of the nonlinearity
of the medium in combination with resonant or non-resonant field enhancement
and optical antenna effects. The study of the ultrafast dynamics of SPPs also
opens new experimental approaches for controlling the light-matter interaction and
super-resolution microscopy simultaneously on femtosecond time and nanometer
length scales as determined by the elementary processes in (homogeneous and
heterogeneous) media.

7.1.2 Linear Optical Polarization

We first discuss some basics of the light-matter interaction to define the relevant
nomenclature. The induced optical polarization of a (nonmagnetic) medium subject
to an incident electromagnetic field is given by

P(ω) = ε0χ(ω)E(ω) (7.1)
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in the frequency domain, where χ(ω) is the dielectric susceptibility, with the
frequency-dependence in general arising from material resonances. χ(ω) is related
to the relative dielectric permittivity by ε(ω) = 1 + χ(ω), and the complex index
of refraction ñ(ω) = n(ω) + iκ(ω) = √

ε(ω). Both χ(ω) and ε(ω) are tensor
properties, but we will initially consider the medium to be isotropic.

Alternatively, the optical response can be described by an induced electrical
current j(ω) as

j(ω) = σ (ω)E(ω) (7.2)

with electrical conductivity σ (ω). The relationship between the typically complex
σ (ω) = σ1(ω)+ iσ2(ω) and ε(ω) = ε1(ω)+ iε2(ω) is given by

σ (ω) = −iε0ω[ε(ω) − 1]. (7.3)

7.1.3 Time Domain Description

The standard frequency domain description of linear optics and the induced
polarization from above has an equivalent time domain formalism. In this case the
optical polarization at time t and location r is the result of the interaction of the
optical electic field E(r, t) with the medium at earlier times and possibly different
locations (non-local response):

P(r, t) = ε0

∫ ∞∫

−∞
R(r, r ′, t ′)E(r ′, t − t ′)d3r ′dt ′ (7.4)

where R(r, r ′, t ′) is the response function of the system. The response function
encodes the memory of the system, with causality dictating that for t < 0,
R(r, r ′, t) = 0. Additionally, time invariance means that the dynamical response
of the system is unchanged by a time offset. For most situations discussed in this
chapter, we can neglect the spatial dependence of the response function.1 The lin-
ear susceptibility in the frequency domain can then be derived from the response
function as

χ(ω) =
∞∫

−∞
R(t ′)eiωt ′dt ′. (7.5)

1 In general the dielectric function is wave vector dependent, ε(k,ω). However, for the regime
discussed here, we can apply the local approximation ε(k = 0,ω) = ε(ω). Non-local effects and
the associated spatial dispersion become significant for ω = vF k, where vF is the Fermi velocity.
This corresponds to k > 1 nm−1, i.e. structure sizes of a few nanometers at optical frequencies
[4]. Note, however, that this effect is different from the finite-size effect, which can also alter the
dielectric function when structure sizes become less than the characteristic scattering length or the
onset of quantum confinement.
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The well known Kramers-Kronig relationship relates real and imaginary parts of the
susceptibility to each other.

A medium is considered instantaneously responding when the excitation is far
off-resonant, meaning that the polarization at t = t0 depends only on the electric
field at that point in time. Resonant interactions are associated with memory effects,
and relaxation processes following the excitation.

The usual Fourier transform relationships hold between the time and frequency
domains and the two descriptions are complementary. While the frequency-domain
description is typically employed for monochromatic optical interactions, the time-
domain provides a more convenient way of analyzing problems where the excitation
is induced by a short optical transient. The time domain analysis is therefore useful
in particular for the dynamical properties of SPPs.

7.1.4 Electronic Properties of Metals

The spectral and temporal characteristics of SPPs for a metal are ultimately de-
termined by the intrinsic electronic structure of the supporting metal. Most typical
metals have hybridized sp bands that are parabolic to first order, with a density of
states (DOS) that varies weakly within the range of a few eV above and below the
Fermi level. sp bands resemble the free electron behavior typical for an s-metal [4].
In the absence of other electronic states or for sufficiently small photon energies, the
optical response of the metal is determined by indirect intraband excitations.

Transition metals are characterized by an occupied d-band a few eV below the
Fermi level, and weak dispersion with high DOS. Figure 7.1 shows a schematic of the
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Fig. 7.1 Schematics of the calculated density of states, band structure, and Fermi surface of gold.
Gold displays free-electron behavior for low photon energies. The absorption and color of the metal
arise primarily due to the interband transition, from the occupied d band to the unoccupied sp band
above the Fermi level. The onset is at ∼1.9 eV near the X-point, which leads to a long tail in the
experimentally observed absorption spectrum, and approximately 2.4 eV for the L-point, producing
a sharp transition. The resulting dielectric function spectral response is shown in Fig. 7.2. DOS and
band structure adapted from Ref. [5], and Fermi surface based on Ref. [6]
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band structure for Au ([Xe] 4 f 145d106s) as an example, near the high-symmetry X
and Γ points. The dominant contributions to the interband d-sp transition are shown,
with onset at ∼1.9 eV and sharp rise at 2.4 eV.

The topology of the Fermi surface resembles the free electron sphere within
the first Brillouin zone, except for the 〈111〉 direction (L neck). Near the Fermi
level EF the optical absorption is weak due to the absence of direct transitions,
but is allowed for finite ω if translational symmetry is broken. This is the case
for electrons with momenta 2π/ l, where l is the electron scattering length. With
increasing wavelength this gives rise to an increase in absorption. The effect of the
d band on the optical properties is discussed further in Sect. 7.1.6 after introducing
the free electron response.

7.1.5 Drude-Sommerfeld Model

Classically the motion of carriers in a metal can be described as ballistic under
the assumption of negligible Coulomb interaction. This is the so-called free electron
response of metals, described by the Drude-Sommerfeld model [7]. Damping, which
gives rise to ohmic resistance, can be introduced via the assumption of inelastic
and instantaneous collisions with unspecified scattering centers. This leaves as the
only key parameter the time τD between collision events, defining a relaxation rate
Γ = 1/τD . The equation of motion describing that relaxor behavior then corresponds
to that of a damped harmonic oscillator without a restoring force term, giving rise to
an apparent resonance at ω = 0 s−1. This is the Drude peak, describing the increasing
absorption with decreasing frequency as mentioned above.

It is instructive to first consider the ideal Drude response without damping. From
the equation of motion of free carriers of density n subject only to a driving external
optical field E(t), the induced optical polarization is given by

P(t) = −nex(t) = − ne2

mω2 E(t), (7.6)

with x(t) the separation of electrons from the ions under the influence of the driving
field, and m and e the electron mass and charge, respectively. Based on that expression
the dielectric function of the charge plasma can be derived as

ε(ω) = 1 −
ω2

p

ω2 , with ωp =
√

ne2

ε0m
(7.7)

termed the volume plasma frequency. This dielectric function is purely real, reflecting
the absence of an energy dissipating term. The conductivity σ (ω) is then purely
imaginary, indicating a 90◦ phase shift between an applied field and the induced
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current. This reflects the hypothetical picture of a current that will persist infinitely
long after a field is no longer applied.

Including damping in the form of scattering to describe the relaxation of the
electron momentum with rate Γ = 1/τD , the resulting dielectric function takes the
form

ε(ω) = 1 −
ω2

p

ω2 + iωΓ
, (7.8)

that gives rise to an imaginary component of ε(ω), which describes the ohmic
resistance.

At low frequencies ω " 1/τD , in the so called Hagen-Rubens regime, the polar-
ization (current) is in phase with the driving field, hence real and purely dissipative.
The conductivity is mostly real and frequency independent, and for ω → 0 converges
to σDC = ne2τD/m. This conductivity is also used to describe radio frequency an-
tenna resonance behavior. At intermediate frequencies, with the optical cycle period
becoming comparable to τD at mid-infrared frequencies, the imaginary conductiv-
ity Im(σ (ω)) peaks at ω = 1/τD and is equal to the real part Re(σ (ω)). Here, a
phase lag appears between the applied field and current response due to the inertia
of the electrons. Above ω = 1/τD (into the near-IR) is the relaxation regime, where
the response is characterized by decreasing real and imaginary parts with Re(σ (ω))
remaining larger than Im(σ (ω)), leading to large ohmic loss and phase lag, and
consequently high damping of SPPs.

7.1.6 Interband Transition and Hybridization

Despite the fact that the electrons obey quantum statistics, the Drude model provides a
satisfactory description for the observed dielectric function over a wide energy range
well below the interband transitions.2 However, as a purely phenomenological model
it does not provide any physical insight into the damping mechanism, and requires
modification for frequencies in the visible and near-IR as the optical frequencies
approach d-band resonances.

Table 7.1 summarizes typical Drude and other parameters for Cu, Ag, and Au as
representative free electron d-metals. From the Fermi velocity vF and τD an effective
electron mean free path l = vFτD can be estimated between successive scattering
events. To account for electron correlation effects in a heuristic manner, a correction
to the electron rest mass via an effective mass m∗ can be introduced.

The contribution of the positive ion cores to the dielectric function, which is not
included in the Drude model, can be corrected for through an empirical, largely
frequency independent term ε∞, with typical values between 1 and 10 depending

2 A quantum mechanical treatment of the electromagnetic response is provided in the form of the
Kubo model. It is based on the fluctuation-dissipation theorem, and an interaction Hamiltonian to
describe the interaction of the electromagnetic field with the charge carriers [8].
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Table 7.1 Free carrier density n, plasma frequency ωp , Drude relaxation time τD , effective mass
m∗, correction term ε∞, Fermi velocity v f , band edge Eg , skin depth at 1 eV δ, and mean free path
l for Cu, Ag, and Au. n and vF from Ashcroft and Mermin [4], τD , ε∞, and band edge from fitting
to NIR-vis data in Johnson and Christy [9], and ωp calculated from Eq. 7.9.

n [cm−3] !ωp (eV) τD = 1/Γ0 (fs) vF (nm/fs) Eg (eV) l (nm) m∗/m ε∞ δ (nm)

Cu 8.47 × 1022 8.85 6.9 ± 0.7 1.57 ∼2.4 ∼11 1.49 1.6 24
Ag 5.86 × 1022 9.17 31 ± 12 1.39 ∼3.8 ∼43 0.96 3.7 22
Au 5.90 × 1022 9.07 9.3 ± 0.9 to 14 ± 3 1.40 ∼2.15 ∼13 0.99 9.84 24

For Au, τD = 14 fs extracted from true Drude free electron behavior [10], with (9.3 ± 0.9) fs
reflecting modifications in behavior due to polarization of core electrons at shorter wavelengths [9].
(Values for 300 K.)
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Fig. 7.2 Dielectric function ε(ω) for Au for ideal Drude behavior with (red) and without damping
(green), in the near-IR to visible spectrum (a). The experimentally measured dielectric function
for Au [9] (blue) shows the deviations at high frequencies, due to the contributions from interband
transitions. b shows the corresponding conductivities Im(σ ) and Re(σ )

on, e.g., the degree of sp electron hybridization with ion core states (see Table 7.1).
The dielectric function ε(ω) then takes the form

ε(ω) = ε∞ −
ω2

p

ω2 + iωΓ
, with plasma frequency ωp =

√
ne2

ε0m∗ . (7.9)

The theoretical Drude behavior of Au for the parameters from Table 7.1, with and
without damping Γ , in comparison with experimentally measured values [9, 10],
are shown for ε(ω) and σ (ω) at visible frequencies in Fig. 7.2a, b, respectively. The
Drude model provides a good fit to the data for energies below ∼2 eV, but diverges
above that energy due to the onset of sp − d interband transitions.

The absorption spectrum of d-electron metals is characterized by the direct inter-
band transition from d to sp bands (Fig. 7.1), with the absorption proceeding largely
from the top of the d-band due to its high DOS. The excitation of free carriers via
intraband sp band absorption is weak in comparison, since it requires additional
momentum scattering, primarily through phonon scattering, but also scattering with
impurities, defects, the surface, or other electrons. However, even the behavior below
the interband transition is strongly affected by the d-bands through the hybridization
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of sp and d bands (copper (3d −4sp), silver (4d −5sp), and gold (5d −6sp)), which
gives rise to mutual polarization of the s and d electrons and deviations from the
ideal free electron behavior. The d-band is therefore an integral part of the collec-
tive electron excitation, even in the regime where the free electron model effectively
describes the optical response.

The contribution of the d-bands can empirically be accounted for by writing ε(ω)

in the form ε(ω) = εDrude(ω)+ εd(ω). The Drude term is well described by the sp
electron density behavior. The d-bands can then be described in an extended Drude
or Drude-Lorentz type model, with the d-electrons assigned an effective Coulomb
restoring force, and with a certain density of oscillators, to parametrize the response.

7.1.7 Optics at Metal Interfaces

Following the general discussion of the optical properties of basic metals expressed
through their dielectric function, we proceed to the description of surface plasmon
polaritons (SPPs) as a collective excitation. A unified description of optical surface
wave phenomena, in particular the notion of SPPs, was developed from the work of
Sommerfeld, Zenneck, and Wood at the beginning of twentieth century, with sub-
sequent experimental studies by Ritchie, Stern, Kretschmann, and Raether, together
with related work by Mie. The optical excitation of the free electrons at the interface
of a metal with vacuum or a dielectric medium gives rise to a collective oscillation of
the carriers. This surface charge density oscillation is associated with a time varying
optical field, hence the notion of a surface plasmon polariton.3

The electron charge density at a metal surface decays to zero on a scale comparable
to the Fermi wavelength λF (the de Broglie wavelength of electrons at the Fermi
energy, ∼0.5 nm for Au and Ag) (Fig.7.3). Despite being a dynamic surface response
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Fig. 7.3 Bulk normalized electron density ne along the surface normal direction across the metal-
vacuum interface, with distance. Friedel oscillations due to electron wavefunction scattering at
the interface characterize the density behavior inside the metal, with decay into the vacuum. The
decaying electron density can extend several tenths of a nanometer beyond the geometric interface

3 Instead of an electronic excitation underlying a surface plasmon polariton, collective excitation of
lattice vibrations can give rise to a surface phonon polariton. The scope of this chapter is limited to
surface plasmon polaritons, but the concepts discussed can readily be extended to phonon polaritons.
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the SPP is determined by the local dielectric properties of the bulk (for structures
with dimensions above the onset of finite size effects).

This surface wave phenomenon manifests itself in two dis tinct ways: either in
the form of propagating SPP modes, or as localized SPP oscillations.The former
surface-bound wave allows for energy propagation and transport over distances at the
dielectric-metal interface. In the latter, the additional restoring force introduced to the
electron motion by geometric constraints of, for example, noble metal nanoparticles,
results in spatially localized resonant charge density oscillations.These can lead to
large optical polarizabilities and local optical field enhancement. Signatures of both
propagating and localized SPP modes can be observed in random, percolated, or
clustered media.

7.1.8 Propagating Surface Plasmon Polaritons

From the wave equation with appropriate boundary conditions at a metal/dielectric
interface, the dispersion relationship for propagating SPPs is given by

k2
‖(ω) =

ω2

c2

εm(ω)εs

εm(ω)+ εs
(7.10)

with dielectric permittivity of the metal εm(ω) and its surrounding εs (assumed
to be frequency independent in the spectral range of interest).4 Specifically for
the metal/vacuum interface the resonant condition ε(ω) = −1 results in ωsp =
ωp/

√
1 + ε∞ for the surface plasmon resonance for a Drude metal.5

Figure 7.4 shows the ω versus k dispersion relationship for the ideal Drude surface
plasmon polariton with and without loss. The SPP is characterized by surface parallel
wave vectors that are large compared to light at optical frequencies. Only in the
region near k‖ ≈ ω/c does the surface plasmon couple to free-space electromagnetic
radiation. For higher frequencies, the excitation requires additional momentum via,
for example, direct evanescent excitation, grating coupling, or increased index of
refraction of the adjacent medium.

Momentum conservation relates the propagating in-plane and evanescent out-
of-plane wavevectors to the incident free space wavevector via k2

⊥,i + k2
‖,i = εi k2

0
for both the metal (i = 1) and adjacent dielectric (i = 2). Im (k‖) describes the
finite propagation length along the interface. Unlike localized SPP resonances dis-
cussed below, due to the large electric field component of propagating SPPs that
penetrates into the dielectric medium, lifetimes generally exceed the Drude damping
time. k⊥,i governs the spatial extent of the evanescent field in the surface normal

4 A wide range of interesting phenomena result for the case of frequency dependent or resonant
surrounding media, but are beyond the scope of this chapter.
5 In treatments of this subject the contribution of core electrons is frequently neglected, using
ε∞ = 1. This results in εsp = ωp/

√
2 and a plasmonic bandgap in the range of ωsp < ω < ωp .
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Fig. 7.4 Dispersion relation of surface plasmon polariton for the case of an ideal (undamped) Drude
metal (red), and Au as an example of a real metal assuming both pure free electron Drude damping
(green), and additional interband damping from experimental values (blue) [9, 10]. The frequency
is normalized with respect to the plasma frequency ωp

direction. The characteristic length l⊥,i is defined as the distance from the surface
where |E(z)/E(z = 0)| = 1/e. For medium i with complex dielectric function
εi = ε′

i + iε′′
i , l⊥,i is given by

l⊥,i =
1∣∣k⊥,i
∣∣ =

λ0

2π

(
ε′

1 + ε2

ε2
i

)1/2

. (7.11)

The penetration depth into the metal is related to the skin depth (the 1/e penetration
depth of the optical field into the metal) δ = c/κω, with κ the imaginary part of
refractive index N = n + iκ . For gold, δ ∼ 22 − 25 nm throughout the mid IR
to visible spectral range (0.1–2 eV) [10]. The weak frequency dependence in that
regime is due to the near linear dependence of 1/κ with ω.

The SPP is sensitive to a wide range of which affect surface modifications, includ-
ing charge, contact to dielectrics, adsorbates, etc. which affect the surface dispersion
relation through the modification of the dielectric function. This is closely related
to the size and shape dependence of local SPPs in confined geometries (Mie and
Rayleigh resonances) as discussed in the following section.

7.1.9 Localized SPP in Small Metal Particles

Localized SPPs are non-propagating modes that can be excited in structurally inho-
mogeneous environments of dimensions comparable to or smaller than the optical
wavelength, i.e. where the translational invariance of the medium is lost on the length
scale of the SPP wavelength. With R defining a characteristic structural dimension
the parameter 1/R plays a role analogous to the parallel SPP wavevector for the case
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of a flat surface. For a spherical particles discussed here as an example, R is the ra-
dius. In analogy to the wavelength of a surface wave of λ = 2π/k, with wavevector
k, for a spherical particle the local mode can be described by an effective wavelength
λeff given by the circumference as λeff = 2π R. This analogy implies k ∼ 1/R.6

The optical response of a sphere of arbitrary radius can be solved exactly using
(the albeit computationally intensive) Mie theory [11, 12], discussed here and also
further below in the context of damping. Analyzing the limiting case of a spherical
particle provides insight into the basic mechanisms underlying the particle response
and its dependence on different input parameters. Many of the conclusions can be
generalized to other simple geometries, such as rods, discs, etc.

For particles which are small compared to the wavelength, the response can be
more simply described by an induced optical dipole in the lowest order approxima-
tion, when neglecting retardation. In that quasistatic limit (R " λ), provided the
particle is still large enough to avoid finite size effects on the intrinsic dielectric
properties,7 the field distribution of the particle follows from the Laplace equation
in spherical polar coordinates. The field outside the sphere is equivalent to the field
of a point dipole at the center of the sphere with dipole moment p = ε0εsαE. The
(complex) polarizability α is given by the Clausius-Mossotti relation:

α(ω) = 4π R3 εm(ω) − εs(ω)

εm(ω)+ 2εs(ω)
, (7.12)

with εm(ω) the dielectric function of the metal and εs(ω) the dielectric function of
the surrounding medium. The corresponding absorption cross section is given by
σ (ω)abs = kImα(ω). Since σ (ω)abs scales as R3, it dominates for small radii over
the scattering cross section σ (ω)scat = (k4/6π)|α|2, which scales as R6.

As seen from Eq. 7.12, for a particle in vacuum or air the Fröhlich resonance con-
dition is given by Re(εm(ω)) = −2εs , provided Im (εm) has a negligible frequency
dependence. In a Drude metal the localized SPP resonance frequency is then given
by ωres = ωp/

√
2 + ε∞. The resonance frequency redshifts with increasing index of

refraction of the environment. Above R ∼ 50 nm the onset of retardation and mul-
tipole excitation gives rise to spectral broadening and decrease in peak amplitude,
which necessitates the application of the full Mie treatment.

The different dielectric properties of Au and Ag lead to pronounced differences
in the spectral behavior close to the SPP resonance. For small spherical Au particles
the plasmon resonance at λSPP ∼ 530 nm is already superimposed on a pronounced
increase in scattering and absorption due to the interband transition. In contrast, for
Ag with the interband transition at ∼4 eV, the SPP peak at 350 nm is dominated by

6 k ∼ 1/R also describes to first order the wavevector distribution cut-off of the near-field modes of
a structural element with characteristic dimension R, and their corresponding spatial localization.
7 For particle size with radius R & λTF with λTF the Thomas-Fermi screening wavelength, the
response can be treated as that of the homogeneous bulk electron density. However, electron spill-
over, as depicted in Fig. 7.3, may become significant in sub-nanometer particles [12, 13]. In addition,
surface scattering becomes relevant when particle sizes approach the effective mean free paths of
the excited electrons. (See also footnote 1.)
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Fig. 7.5 Schematic of local SPP for a prolate spheroid with a/b for the aspect ratio of long to short
principal axis (a). Normalized polarizability squared (|α|2) calculated using using experimental Au
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domain evolution of the plasmon dynamics (c). SPP dephasing time as a function of aspect ratio
and thus SPP energy exhibits a decrease from T2 ∼ 20 fs for the free electron behavior for energies
above ∼ 2 eV due to the interband contribution (d). Dotted lines in panel (c) show exponential fits
for extracting dephasing times shown in (d)

the free electron response. Under otherwise identical conditions, the cross sections
for Ag spheres are about one order of magnitude larger than those for Au.

A useful extension of the sphere model, also in the discussion of the damp-
ing of the plasmon response, is the SPP of an ellipsoid (a "= b "= c) or spheroid
(a = b "= c) shaped particle, treated in the quasistatic approximation. The longitudi-
nal polarizability for a prolate spheroid (see Fig. 7.5a) with aspect ratio a/b is given
by

α(ω) = 4πab2

3
εm(ω) − εs(ω)

εs + L(εm(ω) − εs)
, (7.13)

where L is the so-called depolarization factor, an integral reflecting the particle
aspect ratio. As shown in Fig. 7.5b the plasmon resonance shifts to lower energies
with increasing aspect ratio. The red-shift can be viewed as a result of the increase
in spatial charge separation and thus a decrease in effective restoring force. As we
will see below this allows us to predict the frequency dependence of the plasmon
dephasing and its correlation with the damping of the underlying dielectric function.
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7.2 Damping of Surface Plasmon Polaritons

7.2.1 Theory of Radiative and Nonradiative Decay

The coherent electronic excitation of a medium is followed by fast electronic de-
phasing and the subsequent absorption and decay of the polarization into electron
hole pairs.8 Here we will discuss the radiative and non-radiative relaxation dynam-
ics of SPPs as the fastest initial processes describing the light-matter interaction. We
will restrict the discussion to the homogeneous SPP response, i.e., in the absence of
ensemble effects and different inhomogeneities. We will discuss the basic physics
of plasmon dephasing in this section, followed in subsequent sections by different
frequency- and time-domain experimental linear and nonlinear spectroscopic results
for its experimental determination.

Of primary interest is the electronic dephasing, that is, the eventual loss in phase
coherence of the collective and initially phase coherent oscillation of the free electron
gas (plasma oscillation). In contrast to semiconductors, which allow for a low and
variable carrier density through controlled doping, the carrier density in metals is
comparatively high and fixed (Table 7.1). Those high carrier densities immediately
imply a high scattering and thus high dephasing rate. The SPP decoherence time is
therefore fundamentally linked to the effective relaxation time in the Drude dielec-
tric function as the response function that determines the temporal evolution of the
induced optical polarization in response to an applied optical field. Consequently, to
first order, the Drude relaxation time τD sets an upper limit for the dephasing time
T2 for a localized SPP.

The macroscopic optical response of metals in general, including the SPP reso-
nance for plasmonic metal nanostructures, reflects the underlying elementary electron
dynamics of the bound and conduction electrons involved. Specifically, the linewidth
and shape of the SPP resonance in the frequency domain, or its Fourier transform
in the form of the free-induction decay in the time domain, describes the loss in
phase coherence, which in turn is directly linked to the dielectric function. In the fol-
lowing we discuss the ultrafast electron dynamics of spherical and spheroidal metal
nanoparticles as model systems using analytical treatments. The results can readily
be generalized for more complex geometries using numerical techniques. For small
enough particles (R ! λ) the excitation is dominated by the dipolar SPP response,
with polarizability given by Eq. 7.12 for a sphere or Eq. 7.13 for a spheroid.

8 Following the typically up to 10s fs coherent evolution of electronic excitations, different processes
govern the incoherent carrier cooling and equilibration. The decay of the coherent excitation into
electron-hole pairs gives rise to hot non-equilibrium and non-thermal carrier distributions. Electron–
electron scattering leads to thermalization of the hot electrons within at most a few hundred fs and
can often be described by the Fermi liquid theory. Electron–phonon interaction on 100 fs to ps time
scales leads to the subsequent equilibration with the lattice degrees of freedom. Although not the
subject of this review, these processes lead to transient variations of the dielectric function and its
frequency dependence, ultimately due to the deposited energy in the form of heat. The processes
need to be considered in time resolved experiments, especially with high pump intensities and large
excitation densities, giving rise to a nonlinear response.
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From the calculated spectra for a Au sphere or spheroids with different aspect
ratios as shown in Fig. 7.5b, the corresponding time traces for the polarization decay
are obtained by Fourier transform as shown in Fig. 7.5c. The associated SPP lifetimes
can then either be directly deduced from the 1/e value of the maximum amplitude,
or obtained from the FWHM (Γ ) spectral line width by T2Γ = 2!. Note that the
deviation from an ideal Lorentzian spectral or exponential time behavior in this model
calculation is due to the use of the experimentally measured dielectric function ε(ω)

as an input parameter and associated deviations from the ideal Drude behavior. The
resulting plasmon lifetimes are then shown in Fig. 7.5d as a function of resonant
energy (or aspect ratio). The dephasing times are found to be in the range of 18–
22 fs for energies between 1.0 and 1.7 eV, i.e., the free electron regime. The dramatic
decrease in lifetime at 2 eV is associated with the onset of the interband transition.

The interpretation of the dephasing time is complicated by the various possible
mechanisms contributing to the loss of phase coherence in the plasmon oscillation.
In general, the measured dephasing time T2 is related to a population relaxation time
T1 of participating quantum states, and pure dephasing T ∗

2 by 1/T2 = 1/2T1+1/T ∗
2 .

The pure dephasing contribution T ∗
2 corresponds to elastic collisions of electrons,

which destroy only the phase coherence. Because of the high carrier density and
high electron scattering rate, this is expected to be negligible for SPPs. However,
this relation has limited applicability in this case. The SPP classical polarization
is described in terms of T2, i.e. the polarization decay through inelastic electron
scattering processes, but there is no associated population prior to the decay into
electron-hole pairs after decoherence. Instead, the underlying momentum scattering,
which gives rise to the loss in phase coherence, can be associated with the Drude
scattering τD , with T2 ∼ 2τD .

Drude scattering leads to electron-hole excitation and corresponding absorption
effects, alternatively described via ohmic loss. It competes with radiative decay. The
larger effective oscillator size and polarization with increasing particle size leads to an
increase in the radiation damping contribution. For particles larger than ∼20 nm this
produces a monotonic trend of decreasing dephasing time with increasing particle
diameter.

The quasistatic ellipsoid model discussed above and shown in Fig. 7.5 neglects
radiative decay and thus provides only an upper limit for the dephasing time. In order
to account for radiation damping, we use the rigorous solution for the scattering of
a particle given by Mie theory [14, 11]. The scattering and extinction efficiencies
for the m-th multipole order is related to the scattering and extinction cross sections
σsca,m and σext,m , and the geometrical cross section G = π R2, by

Qsca,m = σsca,m
G = 2

x2 (2m + 1)(|am |2 + |bm |2), and

Qext,m = σext,m
G = 2

x2 (2m + 1)Re(am + bm), (7.14)

with x = k R = ωnd(ω)R/c. The scattering coefficients an and bn are given by
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Fig. 7.6 Comparison of scattering cross-sections for the dipolar mode in spherical particles using
Mie theory and the Drude model with (a) and without (b) intrinsic Drude damping of the metal
electrons. The linewidths without that damping reveal the pure radiation damping contribution.
Resulting dephasing times (c) based on linewidth analysis, demonstrating the relative contribution
of radiative and nonradiative contributions with increasing particle radius [15]. Calculations utilize
the Drude parameters for Au listed in Table 7.1, with ε∞ = 9.84. The surrounding medium has
index of refraction n = 1.5

am = Nψm(N x)ψ ′
m(x) − ψm(x)ψ ′

m(N x)
Nψm(N x)ξ ′

m(x) − ξm(x)ψ ′
m(N x)

bm = ψm(N x)ψ ′
m(x) − Nψ(x)ψ ′

m(N x)
ψm(N x)ξ ′

m(x) − Nξ(x)ψ ′
m(N x)

(7.15)

with the relative refractive index N = n p(ω)/nd(ω) of the particle (n p) and the
dielectric medium (nd ), and the Ricatti-Bessel functions ψm and ξm .

Shown in Fig. 7.6 is the result of the calculated spectral dependence of the scatter-
ing cross sections for spherical Au particles with increasing radius from Mie theory,
using the Drude model parameters with (a) and without (b) damping (based on
Eq. 7.9), and the resulting variation in dephasing times (c) [15]. The finite linewidths
in the hypothetical absence of material damping (b) reveal the radiation contribution
to the plasmon dephasing. The broader linewidths when including material damping
(a) are due to contributions from both radiative and nonradiative dephasing, i.e.,

1
T2

= 1

T rad
2

+ 1

T non−rad
2

, (7.16)

with T non−rad
2 ∼ 18 − 22 fs as discussed above. The increasing dephasing rate for

larger particles is a result of the increasing contribution of radiation damping. As a
result, the dephasing times for the damped and undamped Drude models converge
for the case of large particles where the radiation damping due to the increasing
dipole moment dominates over Drude scattering.

As SPPs oscillate in the visible spectral range with periods in the ∼ 2−4 fs range,
radiative decay times for electronic excitations in the 10 s of fs to sub 10 fs range thus
imply a very good coupling of the optical dipole to the electromagnetic density of
states in the far-field. The results can be compared to the emission of radiation from
a classical dipole or the spontaneous emission from a quantum two level system.
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In order to describe the radiative emission of a oscillating charge it must be
recognized that the radiation field in turn influences the motion of the charge itself,
termed radiation reaction. Assuming the radiation reaction force Fr as the only
damping term, the equation of motion can be written as:

m
d2r
dt2 + ω2

0mr = Fr = −mΓ0
dr
dt

= q2

6πε0c3

d3r
dt3 , (7.17)

with the Abraham-Lorentz equation to describe the reaction force coefficient:

Γ0 = 1
4πε0

2q2ω2
0

3mc3 . (7.18)

This gives rise to radiative lifetimes τ = 1/Γ0 " 20 ns for optical frequencies. An
additional term, conventionally introduced to describe the damping of a Lorentzian
oscillator of the form Γ dr/dt , contains both radiative and non-radiative contribu-
tions.

Similarly to Eq. 7.17, one can start with the induced optical polarization of the
form:

P(ω) = χ(ω)

(

Einc + i
2k3

0

3
P(ω)

)

(7.19)

with particle susceptibility χ(ω). The second term corresponds to the radiation re-
action field with:

Fr = eErad = 2
3

e2

c3 v̈ = i
2
3

ω3

c3 ex = i
2
3

k3 P, (7.20)

using x = e−iωt and v̈ = iω3x for the harmonic oscillator. Hence, both approaches
are equivalent, with the difference that the damping for the resonant denominator
for χ(ω) already contains the a priori indistinguishable radiative and non-radiative
terms.

Interestingly, the quantum description for the spontaneous emission of a two level
system provides a qualitative intuition for the high radiative emission rate as derived
from Mie theory in the femtosecond regime. The transition rate follows from Fermi’s
golden rule as

Γsp = πω0

3ε0!
|〈a|µ̂|b〉|2ρµ(r0,ω0), (7.21)

with transition dipole moment operator µ̂ and ρµ the partial local density of states
(LDOS) at the location r0 of the system, given by ρv(ω) = ω2

0/π
2c3 in vacuum.

With µba
2 = |〈a|µ̂|b〉|2 = q2r2

21 the spontaneous emission rate becomes:

Γsp = ω3
0

3πε0!c3µba
2. (7.22)
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For an atomic emitter with typically µba = (1 electron charge)·(0.1 nm) (or 1.602
×10−29C·m), and ω0 = 2 eV/! = 3.04×1015 rad/s, the corresponding spontaneous
emission lifetime is τ = 1/Γsp = 33 ns. Since the results in the weak perturbation
regime are similar for the classical and quantum treatment (oscillator strength ∼1),
we can rewrite Eq. 7.22 in the following semi-classical form:

Γsp = 8e2π2

3ε0!

(
r
λ0

)2 1
λ0

. (7.23)

This equation highlights the size mismatch r/λ0 giving rise to the long ns radiative
lifetimes for atomic emitters. Considering the SPP nanoparticles as an optical dipole
with r = 10...100 nm, compared to the 0.1 nm of atomic dimensions, will increase
the effective size of the dipole moment and thus reduce the radiative impedance
mismatch. For a one-electron oscillator of that size the radiative rate would increase
by 102 − 106 and with that the dephasing time would decrease from the ns into
the fs regime as seen for a localized SPP of a metal nano-particle. Note that this
model merely qualitatively describes the general trend of an increase in radiative
rate with increasing oscillating charge separation, with details depending sensitively
on geometry.

7.2.2 Experimental Studies of Plasmon Lifetimes

A range of studies have investigated dephasing times from both time resolved and
spectral line width analysis (see, e.g., [16, 17] and references therein). Here we dis-
cuss frequency-domain measurements of T2, with further time-resolved experiments
provided in Sect. 7.4. Since the time scales for plasmon dephasing are in the few fem-
tosecond regime and the relative contributions of radiative and nonradiative decay
pathways are size-dependent, accurate measurements of the intrinsic dephasing time
usually require either a homogeneous sample or individual nanostructure, and var-
ious model assumptions are employed. Dark field scattering of individual particles
or persistent spectral hole burning give access to the homogeneous sub-ensemble
of an inhomogeneous sample. In hole burning, for example, the sub-ensemble with
resonance close to that of the exciting laser frequency is bleached, and the linewidth
of the spectral hole at different fluences is extrapolated to zero fluence to establish
the dephasing time.

As shown in Figs. 7.5 and 7.6, the linewidth and related quality factor Q =
ω0/Γ can be derived with a particle SPP calculation using either the Drude model
or experimental dielectric values. Most experimental results indicate 5–10 fs for
dephasing time T2, i.e. reduced from the theoretical maximum nonradiative value
of ∼18 fs. While the limiting nonradiative case has been demonstrated [18], the
shorter dephasing times often reported may result from structural inhomogeneities,
surface scattering, and radiation damping. Measurements of the dephasing times of
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Ag and Au particles as a function of their geometrical aspect ratio found that the
dephasing times for higher aspect ratios are longer than for similarly sized spherical
particles. Larger particles have shorter radiative dephasing times, consistent with
observations from Mie theory and the quasistatic approximation. The SPP decay
time for long rods approaches 20 fs, indicating that dephasing for these geometries
is dominated by nonradiative Drude relaxation τD .

The different geometric behavior is important for applications of plasmonic struc-
tures. For mediating the coupling of nanoscopic emitters to far-field emission, in-
creased radiation rates and spherical particles are preferred. However, the dephasing
time is directly related to the field enhancement T2 ∝ F , so for many applications it
is desirable to instead maximize the plasmon lifetime.

There are various momentum scattering contributions to the T2 SPP dephasing
discussed above. Electron–electron, electron–phonon, electron-defect, impurity, and
surface scattering can all contribute, so that the total decay rate is the sum of these
different contributions,

Γ =
∑

i

τ−1
i = τ−1

e−e + τ−1
e−ph + τ−1

e−de f ect (7.24)

All of these processes have been found to be largely temperature independent with
the exception of electron–phonon scattering, which shows a linear increase with
temperature, explained with a Debye model for the material-dependent electron–
phonon interaction [19].

In addition to the extrinsic dependence of particle plasmon properties on size,
with dielectric constant ε = εbulk, intrinsic size effects occur for particles where the
size approaches the mean free path of the conduction electrons. This regime, relevant
for few nanometer sized particles, is characterized by increased electron scattering
from the particle surface and ε #= εbulk. A radius-dependent correction to the Drude
damping can be introduced empirically [12, 20]:

Γ (R) = Γ∞ + AvF

R
(7.25)

with the bulk Drude damping Γ∞ and Fermi velocity vF . A has a value near unity
depending on particle geometry and the 1/R-dependence follows from the ratio of
the surface area to particle volume.

The short timescales and multiple relaxation processes involved in SPP dephasing
lead to difficulty in interpreting results and separating the various effects in both fre-
quency and time domain measurements. For time domain measurements, a challenge
arises that for plasmon resonances in the visible to near-IR, the SPP dynamics on few
femtosecond timescales are comparable to the shortest possible laser pulses in that
energy range (e.g. ∼2 fs optical cycle period at λSPP = 600 nm). In the following
section as an application of the nonlinear SPP response we will also discuss non-
linear optical time-resolved techniques for the investigation of the ultrafast plasmon
dynamics.
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Fig. 7.7 a Interaction potential experienced by a bound electron in a medium. The deviation from
a purely harmonic potential leads to a nonlinear optical polarization response under high driving
fields. b The far off-resonant linear polarization P(t) (red) in response to a weak driving field
E(t) (black). c The corresponding induced polarization incorporating a second-order response (i.e.
P(t) ∝ E2(t)), for example in a non-centrosymmetric material (blue), and a third-order response
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7.3 Nonlinear Plasmon Optics

In this section we will first discuss the nonlinear optical response of metallic nanos-
tructures, nonlinear resonant effects, and selection rules. We will then show how they
can provide a means of separating the complex interaction of dephasing processes,
for example from investigation of their relative phase, and also enable precise char-
acterization of electric fields and response functions.

Thus far we have been assuming that the optical polarization P of the metal is
linear with respect to the applied optical field, which applies for the case of a relatively
weak driving field. However, if the incident driving field is comparable to electric
fields within the medium a nonlinear response can result due to the deviation from
a perfect harmonic oscillator potential experienced by the charge carriers coupling
to the optical field. This anharmonic oscillator behavior is shown schematically in
Fig. 7.7 for a bound electron in a medium. In metals, the polarization perpendicular
to the surface is particularly important for second-order nonlinearities, since at the
surface the electrons will experience an additional surface asymmetric potential.

A small nonlinearity can be treated perturbatively, so that the polarization is
expressed as a power series expansion in the driving field:

P = ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3...., (7.26)

with χ (n) the susceptibility tensor describing the material and its resonances for
the n-th (n ≥ 2) order optical process. In the following we employ explicit tensor
notation due to the importance of anisotropy and symmetry considerations in studying
the nonlinear response. The electric field E in this description is the local electric
field experienced by atoms in the medium. The local field can be modified from the
incident driving field due to the polarization of the medium itself. This local field
correction and its importance for plasmonic antennas is discussed further below.
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Fig. 7.8 Summary of common nonlinear optical processes with corresponding energy level di-
agrams. Second-harmonic generation (SHG), sum-frequency generation (SFG), and difference-
frequency generation (DFG) are second-order processes. Third-harmonic generation (THG) is a
third order process, in which three fundamental photons combine to produce a 3ω photon. Coherent
anti-Stokes Raman scattering (CARS) is a resonant four-wave mixing process. The dashed lines
represent the off-resonant excitation of a real state |m〉, |n〉, at a different energy

Just as in the linear case, the induced optical polarization can equivalently be
described in terms of a current, but this approach is often less practical because there
are typically several nonlinear source terms that may be difficult to separate in this
treatment. Both basic harmonic generation wavemixing and more complex frequency
conversion processes follow from Eq. 7.26, with relative efficiencies depending on
the spectral and symmetry characteristics of the linear and nonlinear susceptibilities
of the material.

Several representative nonlinear optical processes are summarized in Fig. 7.8.
Metals typically have bulk inversion symmetry and therefore a vanishing χ (2), so
that all even-order nonlinear responses in the bulk will vanish in the so-called di-
pole approximation, which neglects weaker higher-order, non-local contributions to
the nonlinear response such as magnetic dipole and electric quarupole terms. The
second-order nonlinear processes in metals are therefore dominated by the optical-
surface interaction.9 Second-harmonic generation (SHG) is the simplest second-
order nonlinear process, where two photons with frequency ω combine to produce
a single photon at 2ω. The material response is described by the nonlinear sus-
ceptibility χ (2)(−2ω;ω,ω), which is a third rank tensor with symmetry reflecting
the crystal symmetry and dependent on all frequencies (ω, 2ω) in the nonlinear
process. More generally, the second-order induced polarization can radiate at any
frequency which is a linear combination of the frequencies of the incident waves
(see Fig. 7.9a), allowing sum-frequency generation (SFG) with the energy conserva-
tion condition !ω3 = !ω1 + !ω2, difference-frequency generation corresponding to

9 The term surface is defined here with respect to the actual atomic layer surface boundary, extending
over a region of only a few atomic layers in the surface normal direction, where electronic structure
is distinct from translationally invariant bulk and possibly modified by surface electronic states.
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!ω3 =| !ω1 −!ω2 |, and the degenerate case (ω = ω1 = ω2) of optical rectification
giving rise to a DC field with the condition 0 = !ω − !ω.

Third-harmonic generation (THG) produces a 3ω photon from three incident pho-
tons with frequencies ω, with a rank four susceptibility tensor χ (3)(−3ω;ω,ω,ω).
The general third-order process of four wave mixing (FWM) is based on interac-
tions of three photons, with frequencies ω1, ω2, and ω3 combining to produce an
output photon with frequency ω4, with χ (3)(−ω4;±ω1,±ω2,±ω3). Since these are
odd-order processes, they are permitted for all materials, including those with cen-
trosymmetric point groups. The nonlinear Kerr effect is also a third-order process,
but one with degenerate input and output frequencies, described by the susceptibility
χ (3)(−ω;ω,ω,−ω). Here the negative sign indicates that the process involves the
annihilation of a photon, instead of the simple additive combination seen in harmonic
generation. This process is based on a change in the index of refraction and absorption
of a material proportional to the incident intensity. Another type of four wave mixing
is Coherent anti-Stokes Raman Scattering (CARS), a resonant third order interaction
with ωCARS = ωpump+ωprobe−ωStokes and χ (3)(−ωCARS;ωpump,ωprobe,−ωStokes).
Usually the pump and probe frequencies are identical, and ωStokes is typically chosen
so the difference between the frequencies is resonant with a vibrational level of the
material Ωvib = ωpump − ωStokes. This is the coherent analog to incoherent Raman
scattering, and as a vibrational spectroscopy technique provides chemical specificity.

The efficient generation of coherent nonlinear optical signals requires both energy
conservation and phase-matching conditions, that is, momentum conservation be-
tween the nonlinear and fundamental k-vectors. In the bulk, this is achieved through
the linear dispersion and associated wavelength-dependence of the index of refrac-
tion n(ω). At the interface, it arises from the selection of the input and output k-vector
directions. For rough structures or particles on the order of or smaller than λ, the
loss of translational invariance leads to changes in the momentum conservation con-
ditions, giving rise to nonlinear light scattering and in certain situations allowing
for, e.g. separation of non-local bulk and local surface susceptibilities, as discussed
further below.

These nonlinear responses provide access to conduction electrons throughout the
energy continuum, which allows probing of interband and intraband transitions. The
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enhancement provided by both intrinsic material and extrinsic structural resonances
can also lead to a significant increase in the efficiency of nonlinear processes. A
discussion of plasmon-resonant metallic systems, where the nonlinear enhancement
scales with the order of the process, can be found in Sect. 7.3.4. The coherent nature
of the wavemixing processes leads to a strong dependence on the phase of the driving
field and material response, which provides additional information for characteriza-
tion and control. This is particularly useful for the study of the ultrafast dynamics
in complex metallic nanostructures, where nonlinear techniques provide more de-
grees of freedom to probe multiple resonances and their coupling than linear optics.
The multiple driving fields in nonlinear optics also enable probing of changes in the
complex dielectric function and therefore propagation characteristics of SPPs under
strong-pump illumination, an important consideration for active plasmonics.

7.3.1 Second-Order Nonlinear Optics

Here we will provide a more detailed discussion of the origins and theory associated
with the lowest, second-order nonlinear response. Although the symmetry consid-
erations associated with even-order responses are different from odd-order nonlin-
earities, much of what follows can be readily extended to third-order and higher
nonlinear processes.

Using Einstein summation notation, the second-order optical response can be
written as

P(2)
i (ω1 + ω2) = ε0χ

(2)
i jk (−ω1 − ω2;ω1,ω2)E j (ω1)Ek(ω2) (7.27)

with i, j, k denoting the Cartesian coordinates x, y, z. Within the classical theory of
nonlinear optics, an expression for the nonlinear susceptibility can be derived from
perturbation theory based on a driven, damped harmonic oscillator, analogous to the
linear case, with the addition of a quadratic term as a first order perturbation. This
approximation results in Lorentzian resonances at the fundamental and wavemixing
frequencies,

χ
(2)
i jk (−ω1 − ω2;ω1,ω2) (7.28)

= Ne3a

ε0m2
1

(ω2
0 − (ω1 + ω2)2 − 2i(ω1 + ω2)Γ )

1

(ω2
0 − ω2

1 − 2iω1Γ )(ω2
0 − ω2

2 − 2iω2Γ )

= ε2
0ma

N 2e3 χ (1)(ω1 + ω2)χ
(1)(ω1)χ

(1)(ω2) (7.29)

with resonance frequency ω0 (for a single oscillator), nonlinear parameter a and
number density of atoms N . This simple model provides an intuitive description of
the optical nonlinearity, for the case of weak absorption in the material.
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In the dipole approximation of the quantum mechanical description, by consider-
ing symmetry operations, the second-order susceptibility tensor can be written as a
sum of terms of the form [21, 22]

χ
(2)
i jk (−(ω1 + ω2);ω1,ω2) =

Ne3

2ε0!2

∑

lmn

ρl

[ 〈l|ri |n〉〈n|r j |m〉〈m|rk |l〉
(Ωnl + ω1 + ω2)(Ωml − ω2)

+

〈l|ri |m〉〈m|rk |n〉〈n|r j |l〉
(Ωnl + ω1 + ω2)(Ωml − ω1)

. . .
]

(7.30)

This expression describes transitions from state |l〉 (not necessarily the ground
state), through two intermediate states |m〉 and |n〉, followed by the emission of a
photon with the remaining net energy difference, e.g. !(ω1 + ω2) when returning
to the initial state. ρl is the population of the initial state, 〈l|ri |n〉 is the transition
dipole moment operator in the density matrix formalism, and !Ωnl is the energy
difference for this transition. For driving fields with frequencies far off-resonance,
all components of χ (n) are real and additive, corresponding to almost-instantaneous
transitions involving “virtual” energy levels, as shown in Fig. 7.8. Close to resonance,
Ωnl = ωnl + iΓnl , with Γnl describing the line width of the transition, arising from
damping. Therefore, χ (n) is generally complex, with resonant (R) and nonresonant
(NR) contributions to the nonlinear response,

χ (n) = χ
(n)
R + χ

(n)
NR (7.31)

As shown in Fig. 7.9b, the SHG signal then arises from the sum of these complex
contributions. Since χ

(n)
R will have a strong frequency dependence, the interference

of the two terms will produce dispersive lineshapes and even destructive interference
depending on the relative phase.10 The resonances that lead to this behavior can
involve single or multiphoton processes, with different degrees of coupling [23].

Figure 7.10 shows possible resonant SHG interactions within the Au band struc-
ture, with a plasmon resonant process from the Fermi level and an electronic reso-
nance from the d-band.The mixing of the two fundamental ω photons is essentially
an instantaneous process if the intermediate |1〉 state is a virtual energy level, as
shown for the 2ω electronic resonance. If the intermediate state is resonant with an
eigenfrequency of the material, e.g. in the form of an extrinsic SPP resonance, it has
a finite lifetime and the SHG process can accordingly involve fundamental pulses
separated by a time interval, denoted τ .

10 These asymmetric lineshapes resemble those observed in the case of the quantum interaction of
two competing pathways connecting discrete and continuous energy levels, called Fano resonances.
However, since the interference of the different nonlinear contributions does not arise from quantum
interference, but rather from the classical interference of different linear and nonlinear, and resonant
and non-resonant polarizations, the use of the Fano lineshape terminology for describing asymmetric
linear or nonlinear lineshapes may only be seen as an analogy.
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Fig. 7.10 Schematic
representation of second-
harmonic generation (SHG)
in a three level system, super-
imposed on a band structure
diagram for Au. Enhancement
of the SHG response can occur
when either ω or 2ω corre-
sponds to an eigenfrequency
of the material. As an example,
resonant excitation can occur
via an intermediate extrinsic
SPP resonance at the 800 nm
fundamental frequency, or a
two-photon sp−d resonance
involving the d-bands
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7.3.2 SHG Response at Metal Surfaces

Since the discovery of nonlinear optics, the nonlinear response of metals has received
substantial attention. However, establishing and accurately modeling the microscopic
signal sources has been difficult. The nonlinear response does not follow simply from
the linear case and includes several contributions to the nonlinear polarization, which
are typically hard to separate. These contributions, and the sensitivity of SHG to
surface modifications, hampered efforts to quantify the magnitude of χ (2) in metals.

For centrosymmetric crystals, the lowest order, bulk dipole response is forbidden,
since χ (2) ≡ 0 is the only solution to satisfy the inversion operation. The second-
order response therefore originates from surfaces and interfaces where symmetry
is broken in the sample normal direction, and higher order bulk contributions. The
higher-order terms arise primarily from magnetic dipole and electric quadrupole
interactions. They are usually small compared to the dipolar response, yet as a bulk
response might overall be comparable to a pure surface dipole response. For a cubic
crystal, the bulk polarization from these sources can be expressed as an isotropic and
anisotropic term,

P B(2ω) ∝ γ (ω)∇(E · E)+ ξ(ω)E∇ E. (7.32)

In the free-electron model the anisotropic second term above is zero, but can appear if
lattice effects are taken into account. The first description of SHG in metals therefore
treated SHG as generated by the isotropic bulk term within the skin depth of the
metal [24, 25]. However, this treatment neglects the broken inversion symmetry at
the metal-dielectric interface, which leads to the additional dipole-allowed surface
SHG.

The surface polarization arises due to the rapid change of the electric field at the
metal-air interface, which produces a surface second-order polarization perpendicu-
lar and parallel with respect to the surface. The normal component of the electric field
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at the surface varies over approximately the Thomas-Fermi screening length, which
leads to the spatial confinement of the induced nonlinear current to a subnanometer
region. Therefore, a classical electromagnetic description to model surface SHG fails
and a quantum mechanical treatment is necessary in order to accurately incorporate
the surface charge density and screening effects.

The nonlinear surface polarization is described by susceptibility tensor compo-
nents, with χ

(2)
zzz,s describing the surface normal current, which is expected to be

the largest contribution to surface SHG as it is the most sensitive to the structural
and electric field change across the interface. The other components for the in-plane
surface current are χ

(2)
xxz,s , or equivalently χ

(2)
yyz,s,χ

(2)
xzx,s , etc., and χ

(2)
zxx,s = χ

(2)
zyy,s ,

due to the symmetries of the tensor.
Rudnick and Stern [26] parametrized three contributions to SHG in terms of the

phenomenological constants a(ω) ∝ χ
(2)
⊥,s, b(ω) ∝ χ

(2)
‖,s , and d(ω) ∝ χ

(2)
B . In the

Drude model, b(ω) = −1, d(ω) = 1, and a(ω) was initially assumed to be close
to 1. Several models for calculating the spatial distribution of the electron density
close to the surface and deriving a(ω) were developed, chiefly using hydrodynamic
arguments to derive the surface potential within a jellium framework, which treats
the metal surface as a homogeneous gas of interacting free electrons in a background
of uniform positive charge. These models provided an intuitive description of the
system, but underestimated the magnitude of the SHG by an order of magnitude
[27]. Subsequent models used density functional theory to describe the electron–
electron interactions at the surface, which incorporates the screening of the external
electric field [28]. While these models typically agree qualitatively with experimental
observations, particularly in the long wavelength limit, other effects can also become
significant and change the relative contributions of the different polarization terms.
Additional susceptibility components may also appear when the lattice is considered.
For example, close to resonances the bound electrons may contribute more strongly
to the nonlinear polarization, producing a bulk response larger than the surface, even
in centrosymmetric materials. Consistent with this, a strong enhancement in SHG
has been observed in noble metals close to the interband transition, in addition to the
usual off-resonant nonlinear signal [29, 30].

For noble metals, the k-dependence of the electronic structure is typically ne-
glected in modeling the SHG response. The high density of states and overlapping
d-bands allow for a continuum of transitions with different symmetries, as shown
in Fig. 7.10, producing broad SHG peaks. When the excitation frequency is such
that the band gap Eg is less than 2ω, the SHG response is generally dominated by
transitions where both the initial and the intermediate states are in the d-band. This
sensitivity of SHG to the d-band can provide spectroscopic material specificity.

The literature disagrees on quantitative measurements of the magnitude of the
SHG signal and its components, due to the high sensitivity of SHG to surface structure
and contamination. In particular for Ag and Al, accurate measurements require ultra
high vacuum to ensure clean surfaces. The second-harmonic responses from Ag(111)
and Au(111) surfaces, far off-resonant at !ω = 0.81 eV, were found to be dominated
by the surface normal susceptibility, as expected [31]. Significant contributions were
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also found for other susceptibility components, with their relative magnitude varying
with fundamental frequency. In this early work, the nonlinear response of Au was
measured to be χ

(2)
s⊥⊥⊥ ∼ 2×10−8 m/V, approximately four times larger than that of

Ag, close to 1 eV. Later measurements on thin films found that Ag has the strongest
SHG intensity of the metals, with Au slightly smaller and Cu approximately 50 % of
the Ag response [32]. With careful angle and polarization-dependent measurement
enabling separation of the bulk and surface responses in the experiment, the χ

(2)
s⊥⊥⊥

component was determined to be approximately 200 times larger than χ
(2)
B for Au,

and ∼100 χ
(2)
B in Ag, at a fundamental photon energy of 1.55 eV. Interestingly,

Al has an inherently high bulk nonlinear response, with χ
(2)
B values an order of

magnitude higher than Au and Ag. However, it also suffers from a short skin depth
and high losses in the visible and NIR, in addition to a tendency to oxidize, so is
generally not considered as suitable for plasmonic applications.These experiments
also demonstrated a wide variation in surface susceptibility values depending on
surface roughness and growth conditions of the thin films, an effect that is the subject
of Sect. 7.3.4. Hence, the development of both accurate quantitative experiments and
an accurate quantitative theory has remained difficult.

While the discussion to this point has been limited to the nonlinear response
of metal involving single particle excitations, the next section is concerned with
nonlinear interactions involving SPPs, where the surface-sensitivity of the second-
order response becomes particularly important for the enhancement of the nonlinear
signal.

7.3.3 Nonlinear Wavemixing with Surface Plasmons

The momentum mismatch between the incident and emitted light and in plane SPP
wavevectors as shown in Fig. 7.4 means that linear excitation of SPPs on planar
surfaces typically requires an effective momentum change of the incident field in
the form of a coupling element or increase in index of refraction, for example a
grating or Kretschmann prism, respectively. However, the phase-matching conditions
associated with the different wavevectors participating in a nonlinear wavemixing
process provide additional flexibility, allowing free-space launching of SPPs via the
generated nonlinear polarization, or SPPs as the source for the nonlinear output field,
or both. While even-order processes are intrinsically surface-confined, interactions
involving SPPs are also in practice limited to the near-surface region given by the skin-
depth, even for odd-order processes. Any of the participating wavemixing fields can
be an SPP, with a wavevector that is defined by the surface dispersion relation of the
specific SPP frequency. Figure 7.11 shows a set of different possible configurations.
The surface-parallel components of the free-space k-vectors ki = ωi n(ωi ) sin θi/c,
where θi is the angle with respect to the surface normal and n(ωi ) is the index
of refraction of the dielectric medium, can then be summed appropriately with the
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Fig. 7.11 Schematics for several examples of wavemixing processes involving SPPs. Launching
of SPPs through the use of a grating or a modification of the index of refraction can lead to
enhancement in the nonlinear response (a), with surface-parallel momentum conservation condition
k1(ω1) + 2πn

a0
= k2(ω2) + kSPP(ωSPP), for integer n and grating period a0. SPPs can also be

generated through appropriate phase matching conditions between several input waves (b), e.g.,
k1(ω1) − k2(ω2) = kSPP(ωSPP) for DFG. One or more of the free-space waves in a wavemixing
process can also be substituted by an SPP, e.g. k1(ω1)+ k2(ω2)− kSPP(ωSPP) = k3(ω3) for FWM
(c), or kSPP(ωSPP) − kSPP(ωSPP) = k1,‖ = 0 (d)

SPP wavevectors to achieve energy and momentum conservation for the desired
wavemixing process.

Nonlinear SPP wavemixing can also provide enhanced efficiency of the nonlinear
response. The field amplitudes of SPP modes that drive the wavemixing process are
enhanced near the surface due to the spatial field confinement, thus enhancing the
nonlinear polarization generated. An example of this process is the enhancement of
SHG observed when an SPP is excited through prism coupling onto a silver film in
the Kretschmann geometry [33]. Similar effects have been seen in third-harmonic
generation (THG) with total internal reflection [34]. The plasmon-enhanced nonlin-
ear response can interfere with other sources of nonlinear polarization in the system.
Due to their different phase relationship with the driving field, this interference will
also depend on the incident k-vector.

Early in the development of nonlinear optics, four-wave mixing (FWM) was
proposed as a mechanism for launching surface waves such as exciton polaritons,
phonon polaritons [35] or SPPs [36], by tuning the angle of illumination to achieve
wavevector matching at the sample-air interface. The efficiency of this approach is
determined by the local field enhancement and nonlinearity of the metal. While the
nonlinearity of metals is high in general, the interaction volume is limited by the skin
depth. This leads to a low efficiency in generating SPPs by wavemixing, compared
to direct excitation of an SPP of the corresponding frequency. Another approach
to achieve SPP coupling via a nonlinear process is create a transient temperature
grating by interfering two incident waves on the surface. This is a incoherent pump
induced, rather than a coherent wavemixing process. The resulting thermal gradient
gives rise to a spatial variation in the index of refraction, and thus allows for launch-
ing SPPs. This process has a much higher efficiency than FWM with femtosecond
pulses, but a much long timescale, given by thermal diffusion [37]. In order to main-
tain the ultrafast timescale of wavemixing, higher efficiencies could be possible with
a second-order process such as DFG [38] rather than FWM. These and other combi-
nations of free space and propagating SPP waves (examples shown in Fig. 7.11) have
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Fig. 7.12 Areas of local
field enhancement on rough
metallic surfaces lead to large
enhancement in both the local
and the overall nonlinear
response, here for the example
of harmonic generation nω,
with n = 2, 3 etc

ω nω

χs
χB

been considered for second and third order wavemixing SPPs, and recently received
renewed attention [39].

SPPs can also act as one or more of the driving fields in a nonlinear optical process
[40–42] (Fig. 7.11b, c). For the right conditions, SPPs contribute in a phase-matched
fashion to the wavemixing process, e.g. SHG generation from two SPP fields [43].

7.3.4 Surface-Enhanced Nonlinear Processes

The sensitivity to symmetry-breaking of even-order nonlinear processes makes them
an effective tool for the study of, e.g., surface electronic and vibrational resonances
and their coupling. However, the nonlinear response is weak in general, and further
limited by the small volume of surface material involved in the nonlinear interaction.
Enhancement can arise from the localization and concentration of the optical fields
near a surface or at a nanostructure. Localized plasmon resonances in noble metal
nanoparticles, clusters, and rough metal surfaces can provide a further increase in
nonlinear optical effects, and substantially change the relative bulk to surface contri-
butions in a nonlinear response.11 These “hot spots” provide enhancement in linear
optical processes as well, but with regard to an aggregate bulk response are reduced,
since energy conservation conditions require that enhancement of the field is bal-
anced by lower local fields and thus reduced optical response in other regions. In
nonlinear processes, in contrast, in one sample location the total signal enhancement
can be much higher due to the nonlinear dependence of the response on the local
optical field. The breaking of translational symmetry and spatial redistribution of the
optical field is therefore beneficial to the higher order response (See Fig. 7.12).

The enhancement of an optical response is described phenomenologically in terms
of a local field enhancement factor L(ω), which modifies the driving electric field,
analogous to the Fresnel factors for planar interfaces in reflection or the bulk local
field correction factor discussed earlier, as

11 In random, fractal, or percolated media, a mixed mode between localized and propagating SPPs
is possible. The interference of this collective mode of the local excitation and multiple scattering
in the disordered media can give rise to Anderson localization for typically uncorrelated disorder
with associated nonlinear optical effects [44].
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Eloc(ω) = L(ω)E(ω). (7.33)

A local field factor needs to be considered for all optical fields contributing to the
nonlinear process, so that the total enhancement is the combination of all enhance-
ment factors incorporating the order and coherence of the nonlinear process.12

Raman scattering is an incoherent, linear optical process, but the enhancement in
the field is approximately proportional to L2(ω) since the fundamental and Stokes
shifted Raman signal have only a small frequency separation compared to the typical
spectral variation of L(ω) for the supporting metal, and will both be enhanced.13 This
effect has been exploited for surface-enhanced Raman scattering (SERS), where the
increase in the effective cross section by a rough metal film can provide single-
molecule sensitivity [46], and is also the basis of tip-enhanced Raman scattering
(TERS). In both cases, the additional sensitivity arises from the redistribution and
near-field localization of the field in the surface normal direction. A higher-order,
coherent process such as SHG also benefits from the lateral redistribution of the
field, with areas of high field enhancement increasing the signal nonlinearly. For
SHG, the enhancement in the polarization is given by

P(2ω) = L(2ω)χ (2)(−2ω;ω,ω)L2(ω)E2(ω) (7.34)

where L(ω) and L(2ω) are the local field factors at the fundamental and SHG
frequencies respectively. The total intensity enhancement is then ∝ L2(2ω)L4(ω).
Both fields in this case might not simultaneously be enhanced due to their spectral
separation, in which case either L(ω) or L(2ω) is typically approximately equal
to 1. The same arguments apply to higher-harmonic generation processes, with the
general field enhancement behavior

P(nω) = L(nω)χ (n)(−nω;ω,ω, ...)Ln(ω)En(ω). (7.35)

In a spatially distributed nanoparticle system, the regions of highest local field
enhancement for different wavemixing processes can be in different locations, de-
pending on the resonant frequency and mode behavior. Degenerate four wave mixing
in general displays higher enhancement on rough surfaces than third harmonic gen-
eration, due to more than one driving laser field being enhanced simultaneously. It
has also been observed that harmonic generation tends to show lower enhancement
than incoherent processes such as the nonlinear Kerr effect, since the coherence of
the process can produce destructive interference in random metallic systems [44].

12 Equivalently, the enhancement can be incorporated into a modification of the susceptibility
tensor, but this description may be less intuitive for the case of, for example, surface-enhanced
Raman scattering, where the susceptibility tensor is not the intrinsic metallic system but rather a
coupled metal-molecule system.
13 Because of symmetry considerations arising from the Raman tensor, this coupling of the incident
and radiative fields is not rigorously accurate. In reality, the relative orientation of the local field
and the molecular dipole or crystallographic orientation can lead to more complex enhancement
behavior. For more details, see, e.g., Ref. [45].
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The general principles of surface- and plasmon-enhanced nonlinear optical effects
are well understood. However, details in terms of the relative surface and bulk modifi-
cations to the susceptibility, the interband and intraband transitions, finite size effects
on band structure, plasmon mediated effects in the nanostructure, and interactions
with the substrate are not yet well understood. Furthermore, the spectral dependence
and magnitude of the field enhancement varies critically depending on the surface
morphology, which is difficult to model. Grating structures can be useful for the treat-
ment of surface-enhanced nonlinear processes, since they provide a model system
for rough surfaces. Experimentally, the enhancement of nonlinear optical effects has
been demonstrated on various samples, with roughness controlled to a certain extent
through film thickness and growth conditions [47], and SHG enhancement of 104 on
a roughened Ag surface was observed early on [48], in addition to surface-enhanced
higher order processes [49]. However, just as for a planar geometry, the surface and
bulk contributions to the SHG are difficult to separate, and both may be modified by
the roughness [50].

7.3.5 Nonlinear Light Scattering

One of the complications of surface-enhanced nonlinear interactions is that the
roughness can lead to extrinsic dephasing and depolarization. Similarly, nonlinear
processes in particle systems, e.g. in gas and liquid phase, where there is a substantial
spatial inhomogeneity in local fields and nonlinear susceptibilities, will be accom-
panied by scattering. For the small particle limit, where the particles can be treated
as dipole sources (i.e. 5–10 nm for visible light), nonlinear light scattering is known
as hyper-Rayleigh scattering, in analogy to Rayleigh scattering [11]. Some confu-
sion in terminology exists in the literature, but according to the strict definition, the
nonlinear response in particles larger than 10 nm arises from coherent effects, even
when the contributions from the particles add incoherently, and so hyper-Rayleigh
scattering can be a misleading term [51].

The change in momentum conservation rules in scattering processes compared
to bulk media produces new and additional symmetry selection rules, which are
described in the context of nonlinear Mie and Rayleigh scattering with an effective
surface susceptibility χ

(n)
s [52–54]. In particular, the lack of translational invariance

and k ∝ 1/r for a single nanoscopic system lifts the phase matching condition, so that
the projection of the nonlinear k-vectors to the far field is not restricted to a particular
direction. Of the different nonlinear interactions in individual nanoparticles, third-
order processes such as THG behave similarly to linear scattering, while second-
order processes such as SHG have additional sensitivity to the particle surface and
geometric details. Furthermore, the susceptibilities for nanoparticles can be very
strongly affected by grain size and crystallinity. Analogous to the linear case, if the
particles are large enough to allow for retardation effects over the particle diameter,
higher order multipolar contributions to the nonlinear polarization occur.
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Fig. 7.13 Symmetry considerations for a sphere of centrosymmetric material (a) and a conical
tip (b). No second-order response appears in the exact forward or backscattering directions for the
sphere since the surface contributions are out of phase and interfere destructively, but a non-local
response can produce SHG in other directions. For the conical tip, the broken symmetry along the
tip axis allows both local dipolar forward- and back-scattering and non-local scattering

The case of SHG from a spherical nanoparticle of a centrosymmetric material
is particularly interesting for reasons of symmetry of the second-order nonlinear
response. Inversion symmetry is broken at the surface, but the usual linear dipole
mode aligned in the direction of the pump polarization, as is responsible for linear
Rayleigh scattering, will not produce SHG as the surface contributions are 180◦ out
of phase and thus cancel (Fig. 7.13a. Instead, a non-local nonlinear polarization in
the direction of the pump wavevector arises due to retardation in the phase across
the particle diameter [55], in addition to a possible higher-order bulk response. The
orientation of the dipole and bulk quadrupole sources is such that no SHG will radiate
in the exact forward and backward directions, but radiates in non-collinear directions
with spatial distribution determined by particle size.

A conical tip, such as those used in near-field optical experiments, while
semi-infinite, can also be considered within the context of nanoscale particles. It
possesses broken mirror symmetry along the tip axis (∞mm point group symme-
try). This leads to fully local dipole-allowed SHG polarization P(2)

loc (2ω) along the tip
axis [53]. This symmetry breaking produces different polarization selection rules for
SHG in nanoscopic metal tips than for surfaces or spherical particles. In particular it
is possible to distinguish the non-local bulk P(2)

nonloc(2ω) and local surface P(2)
loc (2ω)

SHG response, since these two contributions are perpendicular (Fig. 7.14) and pro-
duce correspondingly cross-polarized SHG. As discussed above, this separation of
local and non-local SHG contributions is typically difficult for planar surfaces due
to nonlinear laws of reflection, which limit emission to the direction defined by the
incident k-vector direction. The conical geometry therefore provides a model system
for characterizing nonlinear enhancement and scattering effects, since it is a single
element structure with well-defined symmetry and permits the separation of different
SHG responses.

The symmetry-breaking behavior of a Au conical tip with apex radius ∼20 nm is
demonstrated in Fig. 7.14, for sagittal illumination of the tip exciting a local, purely
dipolar surface nonlinear polarization P(2)

loc (2ω) oriented along the tip axis, lead-
ing to radiation of SHG in the forward direction. In addition, the non-local source
perpendicular to the tip axis can radiate in the 90◦ direction. This arises from retarda-
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Fig. 7.14 Geometry of SHG scattering from a conical nano-tip (a), with forward scattering allowed
for sagittal p-polarized illumination due to the broken symmetry along the tip axis (b). For 90◦

detection both a bulk non-local and dipolar response are possible (c). Input polarization dependence
for collinear SHG (b) from a nano-sphere reference (green) and nano-cone (blue). No SHG is
observed in this geometry for the sphere, but the cone demonstrates the expected dipolar response.
SHG in 90◦ sagittal illumination/detection geometry, for p and s polarized output (c), demonstrating
the separation of dipolar surface and bulk response

tion from spatially-distributed surface nonlinear polarizations and higher-order bulk
contributions. Experimental results are shown, first with no SHG observed for a nano-
sphere in the forward-scattering direction used as a reference (Fig. 7.14b, green). In
contrast, for the tip, SHG in this geometry is dominated by the local dipole-allowed
pin − pout contribution (blue), with the expected two-fold anisotropy, i.e. intensity
ISHG ∝ cos4(θ). Similar to a planar surface, the response is due to the strong χ

(2)
s,⊥⊥⊥

tensor element. For the tip, the weak sin − pout response (data not shown) suggests
that the χ

(2)
s,⊥‖‖ susceptibility component is negligible. With sagittal illumination and

90◦ detection for a tip (c), both the local dipolar pin − pout and non-local (distributed)
bulk pin − sout and sin − sout response appear.

These results provide a demonstration that the additional degrees of freedom that
arise from the combination of intrinsic material response and extrinsic nanoscale geo-
metric properties enables separation of bulk and surface SHG. The SHG properties
again depend sensitively on the morphology and local environment of the nanos-
tructure, but the symmetry selection rules derived above are generally applicable
to asymmetric nanostructure systems. For example, the presence of a substrate will
break symmetry and relax the polarization selection rules for metal particles, and the
tip in a near-field optical experiment will have a similar effect on a local scale. With
the capability to probe both surface and bulk properties on the nanoscale, the study
of plasmonic behavior with high specificity can be achieved.
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7.3.6 Nonlinear Optical Antennas

As discussed above, particles and rough surfaces can provide large field enhance-
ments, but with the increasing interest in plasmonic applications such as imaging,
sensing, cloaking, or harvesting, a need for controllable and reproducible linear and
nonlinear responses has developed. Recent advances in chemical synthetic meth-
ods allow the production of crystalline metal nanostructures with a wide range of
shapes and sizes with nanometer-scale structural control. Single-crystal nanoparti-
cles and nanowires often exhibit strong plasmonic resonances due to their low defect
density and well-defined shape. Additionally, lithographic techniques, focused ion
beam milling, and template stripping now provide a means to generate arrays of
nanoparticles and other more complex structures such as coupled nanowires and
bowtie antennas, which have a large field enhancement in the nanogap region. For
an antenna, the SHG polarization is again given by

P (2)(2ω) = χ (2)(−2ω;ω,ω)L2(ω)L(2ω)E2, (7.36)

where the nonlinear response is given by the material susceptibility. The local field
factor L now describes enhancements due to antenna resonances in addition to
localized plasmon resonances, and so depends sensitively on geometrical and en-
vironmental properties and the coupling of plasmonic modes.

Similar to radio-frequency antennas, antenna resonances for plasmonic antennas
such as rods occur when the length of the antenna is equivalent to an integer multiple
of half the wavelength. However, the wavelength is modified from the free-space
wavelength by the SPP dispersion on the surface of the metal [56]. The precise res-
onant behavior of the antenna depends sensitively on geometrical details such as
diameter, cross-section, and shape, as well as roughness. For such simple anten-
nas, the spectral dependence of the antenna resonances is often approximated by
Lorentzian lineshapes,

L(ω) ∝
∑

l

Al

ωl − ω + iΓl
, (7.37)

where ωl are the resonance frequencies, Γl is the damping of the antenna, and Al the
relative strength of the resonance.

The local field correction arising from optical antenna resonances can provide an
enhanced nonlinear response, up to several orders of magnitude, arising from the
enhancement of the linear electric field. However, the spectral dependence of the
local field enhancement can lead to a shift in the emission spectrum, as represented
in Fig. 7.15, and therefore also an apparent spectral shift in the nonlinear response.
The nonlinear response may also not be accurately predicted by the linear far-field re-
sponse, due to the different near-field spectral density of states distribution compared
to the far-field [57].

For non-degenerate wavemixing processes, coupled antennas can be designed
such that several input frequency components are simultaneously enhanced [58, 59].
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Fig. 7.15 Interaction of light with a rod antenna, showing the spectral shift in emission due to the lo-
cal field enhancement associated with antenna and plasmon resonances at incident and wavemixing
frequencies L(ω1), L(ω2), and L(Ω)

The localization and concentration provided by optical antennas can also be utilized
to couple to highly nonlinear media, such as GaAs, ZnO, or BaTiO3, to generate a
strong nonlinear response.

7.4 Femtosecond Time-Domain Measurement of Plasmon
Dynamics

In this section we resume the discussion on plasmon dynamics from above (7.2),
demonstrating the use of the nonlinear SPP response itself for the determination
of the dynamic response underlying a localized SPP excitation, and with that the
electron dynamics of the supporting metal. An SPP, as with any optical response, is
defined in terms of both amplitude and phase, whether in the spectral or temporal
domain. The characterization of SPP dynamics, however, is frequently incomplete,
with only amplitude but no phase information obtained, e.g., in incoherent dark
field scattering. The underlying dynamics inferred from these spectral measurements
therefore rely on model assumptions such as a Lorentzian lineshape from a harmonic
oscillator model with flat spectral phase, a transform limited driving laser pulse, or
constant relative phase of the response with respect to the non-resonant background.
In addition, in frequency space the fast initial dynamics of the plasmon evolution
are encoded in the spectral wings, where the signal level is low and thus sensitive
to background and noise. Consequently, the spectral wings are very susceptible to
possible constructive or destructive interference with the background. Conventional
techniques are therefore unsuitable for the study of complex, multi-resonance, or
coupled plasmonic systems.

In contrast to incoherent techniques such as dark field scattering, nonlinear optical
techniques such as harmonic generation provide access to full amplitude and phase
for optical waveform characterization, enabling the direct measurement of plasmon
dephasing time and other electron interaction and relaxation behavior. Access to the
ultrafast nonlinear response is therefore important for developing an understanding
of field enhancement and resonance effects, since a resonance with a plasmon ex-
citation in a system can enhance the linear and nonlinear response, but will also
lead to a prolonged dephasing time [60]. Ultrafast nonlinear measurements can ad-
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ditionally provide insight into more complicated effects such as the interaction of
the various resonance decay channels and interface relaxation time, and the effect
of spatial confinement on scattering. Measurements of the temporal dynamics of
plasmon resonances in the visible range are challenging, since the few-femtosecond
resolution necessary is comparable to the shortest possible pulse duration in the de-
sirable visible to near-IR local SPP resonance energy range. However, achieving the
required temporal resolution is not necessarily limited by the shortest pulse available,
but rather by the signal to noise ratio and precise characterization of the full optical
transient in amplitude and phase.

Plasmonic interactions can be probed with interferometric homodyne or hetero-
dyne techniques or electro-optic sampling to extract the response function defined
in Eq. 7.4. These techniques can resolve the ultrashort dynamics of the plasmon re-
sponse R(t) with exact reconstruction of the response function by deconvolution
from autocorrelation and cross-correlation measurements. Spectrally resolved non-
linear techniques can provide the simultaneous phase and amplitude information
needed for the unambiguous reconstruction of both the driving field and the resonant
polarization transient response, for example through a frequency resolved optical
gating (FROG)-based technique [61].

FROG allows the determination of a pulse amplitude and phase through mea-
surement of the self-gated pulse in the time-frequency domain. The most common
implementation of FROG is based on the SHG response arising from two pulses
interacting in a medium, given by (X (t)+ X (t − τ ))2, where X (t) is the field tran-
sient of the pulse and τ is the time delay between the two pulses. In a non-collinear
implementation, only the cross-term is detected, so that the FROG spectrogram cor-
responds to a spectrally-resolved intensity autocorrelation, i.e.,

S(2ω, τ ) ∝
∣∣∣∣

∫ ∞

−∞
X (t)X (t − τ )e−iωt dt

∣∣∣∣
2

, (7.38)

For a nonlinear medium which is far off-resonant, where the response is essentially
instantaneous, the field transient X (t) is simply proportional to the electric field of
the driving laser pulse E(t), gated by the time-delayed pulse E(t −τ ). For a material
close to resonance, the finite response time leads to an induced polarization transient,
so that X (t) = P(t), with free-induction decay behavior. From the spectrogram, the
full electric field or polarization transient information can be reconstructed using an
iterative algorithm. The resonant response function R(t) can be extracted through
deconvolution.

The spectrogram can be measured in a collinear geometry, producing additional
terms and a spectrally resolved interferometric autocorrelation or IFROG:

S(2ω, τ ) ∝
∣∣∣∣

∫ ∞

−∞
(X (t)+ X (t − τ ))2e−iωt dt

∣∣∣∣
2

(7.39)
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Fig. 7.16 Modeled plasmon response function R(t) (a), with dephasing time T2 = 20 fs, and
resulting resonant polarization response P(t) subject to driving electric field E(t) (b). Incident
pulse duration τ0 = 10 fs, and ω0 = ωpl corresponding to 800 nm wavelength (details in text)

A model of the effects of a finite response function R(t) on the resulting induced
polarization P(t) transient in the time domain is shown in Fig. 7.16. The plasmonic
response is modeled as a damped harmonic oscillator in the time domain,

R(t) = Aeiωplt e−γ t (7.40)

where A gives the effective oscillator strength, ωpl is the plasmon resonant fre-
quency, here taken to be resonant with the laser pulse, and the linewidth is given by
γ = 1/T2 = 1

20 fs−1. A sech2 laser pulse with flat spectral phase is used to simu-
late the driving field E(t), with full width at half-maximum τ0 = 10 fs and carrier
frequency ω0 = ωpl corresponding to 800 nm center wavelength, i.e.,

Esim = E0sech
1.763t

τ0
eiω0t . (7.41)

The resulting polarization arising from the driving field demonstrates the increased
response time from relaxation of the damped harmonic oscillator model of the plas-
mon resonance, with its free-induction decay lasting past the end of the laser pulse.

A possible experimental geometry for measuring SPP dynamics in the time do-
main is shown in Fig. 7.17. A high quality, well-aligned parabolic mirror is used as
the focusing element in order to minimize dispersion and maintain short pulses and
a spatially well-defined Gaussian beam profile. Phase and amplitude of the driving
laser pulse are determined using an instantaneously responding reference medium.
The BBO acts as the non-resonant medium for pulse characterization, mounted inter-
changeably with the plasmonic system without further alignment. Results are shown
in Fig. 7.18a for BBO, and the corresponding IFROG for a resonant plasmon tip
response in b, with the characteristic spectrally narrowed and temporally broadened
plasmon excitation [62]. The tip, as a resonant medium, shows spectral narrowing
due to the temporal broadening from the finite response function, and a frequency
shift in the spectrogram due to the difference between the plasmon resonance and
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Fig. 7.17 Schematic of the experimental set-up for IFROG characterization of the plasmon dynam-
ics in a single nanoscopic plasmonic structure, here with a plasmonic conical tip as an example of a
localized SPP system (a). A Mach-Zehnder interferometer with special beamsplitter and parabolic
mirror are employed to minimize dispersion and provide diffraction-limited excitation. Inset SEM
image of a Au plasmonic tip. Power dependence of tip apex SHG, showing the expected quadratic
behavior (b)

laser carrier frequencies. Figure 7.18c, d show the electric field E(t) and polarization
P(t) amplitude and phase, reconstructed from a FROG retrieval algorithm, for the
time and frequency domains. Panels (d) and (f) are the plasmon response function
from deconvolution of P(t) and E(t), with comparison to the decay for a damped
Lorentzian fit as given in Eq. 7.40. From R(t) a dephasing time of 20 ± 5 fs can
be directly determined without model assumptions, while for a tip with plasmon
frequency not resonant within the bandwidth of the driving field, the tip response
is essentially instantaneous (data not shown). The deviations from a flat phase be-
havior indicate possible inhomogeneities arising from structural imperfections in the
nanoscale tip.

The value of T2 is in agreement with the low-energy limit and energy-independent
damping, i.e. T2 ∼ 2τD ∼ 20 fs for Au, as shown in Table 7.1. This corresponds to
the non-radiative limit for decay of the plasmon response in the Drude model. Note
that this value was directly extracted from the envelope of the reconstructed plasmon
response function (green curve, Fig. 7.18) without any model assumptions.

Other nonlinear processes can also provide the necessary nonlinear polarization
and pulse characterization, and may be required since SHG relies on a non-
centrosymmetric structure. However, THG for example cannot distinguish bulk,
surface, local and non-local effects and is therefore not ideal for extracting the pure
plasmonic response. In addition to FROG-based measurements, time-resolved two-
photon photoemission can also provide information on plasmonic dephasing. Here a
two-pulse cross correlation measurement is used to measure the photoemission cur-
rent from electrons excited above the vacuum level as a function of pump-probe delay,
providing phase information, sub-femtosecond time resolution, and sub-100 nm spa-
tial resolution in combination with photoemission electron microscopy (PEEM). As
an early example, Ag nanoparticles on a grating were studied to determine both mor-
phology and dynamics of the nanostructures, with dephasing times as short as 5 fs
measured [63].
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Fig. 7.18 Interferometric SHG FROG measurement of BBO (a) and a plasmon resonant Au tip
(b). Phase (dashed) and intensity (solid line) of E(t) (blue) and P(t) (red) (c), derived from a and
b. Corresponding Fourier transforms E(ω) (blue) and P(ω) in frequency domain (e). Response
function R(t) (d) and R(ω) (f) (green) from deconvolution of (c) and (e). Damped harmonic
oscillator model response function fit RL (t) and RL (ω) shown in black. Reprinted with permission
from Ref. [62]. Copyright 2010 American Chemical Society

7.5 Ultrafast Spatio-Temporal Control with Plasmonic Antennas

The capability of optical antennas to generate high spatial localization and enhance-
ment of optical fields is also important for characterization of nanoscale materials.
While most implementations of optical antennas rely on planar geometries, spatial
control of optical fields for nano-imaging can be realized using free-standing conical
tip geometries, such as those used in scanning probe applications and discussed in
Sect. 7.3.5 as individual nanoscopic nonlinear antennas.

The sensitivity and efficiency of optical antennas can be improved by reducing
the mode-mismatch between the exciting far-field waveform and the near-field ex-
citation, for example using wedges, grooves, or cascaded structures to achieve a
continuous transformation from the micro- to the nano-scale. Taking advantage of
the radius-dependent index of refraction experienced by SPP modes on a conical
waveguide such as a noble metal tip is one approach for achieving high localization
for background-free spectroscopy and imaging [64, 65]. This adiabatic nanofocus-
ing approach has the advantage that scattering losses due to structural discontinuities
and the decreasing SPP wavelength are minimized until the apex, where a nanoscale
optical emitter is efficiently generated.

Furthermore, the nanofocusing mechanism does not rely on a resonant response
and therefore is only weakly wavelength and phase dependent, unlike most optical
antenna concepts which rely on the spectrally-limited plasmonic response. A broad
bandwidth and thus short pulse delivery to the apex is possible. Other approaches
to achieve localization rely on the interference of plasmon modes in an arbitrary
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Fig. 7.19 SEM image of Au tip, illustrating grating coupling for SPP launching and nanofocusing
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pulse duration. Demonstration of deterministic pulse control at the tip-apex, with interferometric
spectrogram of transform limited pulse and pulse with 200 fs2 applied chirp (d). Corresponding
reconstructed spectral amplitude and phase (e), showing the close agreement between the applied
and extracted phase. After Ref. [67]. Copyright 2011 American Chemical Society

metallic structure [66]. This requires some combination of spatial, spectral, and
phase pulse shaping of the driving laser field, and often uses adaptive algorithms in
order to generate the desired nanofocus at a particular spatial location. However, the
necessary local interference relies on a specific phase relationship between modes
and therefore limits the spectral and temporal degrees of freedom available at the
nanofocus. In contrast, the adiabatic nanofocusing process retains essentially all
degrees of freedom to deterministically control the optical transient at the tip apex.

A demonstration of femtosecond-nanometer spatio-temporal control based on
plasmonic nanofocusing on a tip is shown in Fig. 7.19. Femtosecond SPPs are
launched onto an electrochemically etched Au tip using a grating structure formed
by focused ion beam milling to overcome the photon-SPP momentum mismatch (a).
The grating is spatially chirped for maximum coupling bandwidth. The SPPs then
propagate along the tip towards the apex experiencing an increasing effective index
of refraction, which leads to an increasing wavevector, decreasing group velocity,
and increasing spatial confinement, thereby concentrating the electric field into the
tip apex. Figure 7.19a shows the 20 nm spatial field localization at the tip apex. The
efficiency of the process is high enough that, combined with the symmetry-breaking
along the cone axis, SHG can be generated at the tip apex. This enables full charac-
terization of the electric field transient at the apex, for example through IFROG, as
discussed previously. Furthermore, frequency-domain pulse-shaping can be used
to compensate dispersion with a multiphoton intrapulse interference phase scan
(MIIPS) algorithm [68], and also to generate pulse pairs with controllable delay
for the IFROG measurements themselves. The resulting spectrogram for a few-
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femtosecond pulse at the apex is shown in Fig. 7.19b, with reconstructed amplitude
and phase (c) corresponding to a 16 fs transform limited pulse. Arbitrary waveform
generation and full deterministic control of the re-emitted apex radiation is possible
through feedback on the nonlinear response of the tip. This capability is demon-
strated here by applying a 200 fs2 chirp to one of the pulses at the apex, as shown in
Fig. 7.19 d) and e) with the reconstructed amplitude and phase characteristics from
cross-correlation FROG (XFROG).

The localized plasmon resonance for the tips in these experiments was red-shifted
relative to the laser bandwidth, so that the tips were non-resonant and had an almost
instantaneous response. A tip with a plasmon resonance close to the laser wavelength
would provide higher field enhancement, but with achievable minimum pulse dura-
tion now limited by the plasmon dephasing time to a few 10s of fs, rather than the
SPP coupling bandwidth. The adiabatic nanofocusing process is necessarily accom-
panied by a decrease in the SPP group velocity on approaching the apex of the tip
[69]. This SPP slow-down could provide a further increase in the nonlinear response
of the tip-apex.

The grating-coupled tips demonstrate how the combination of the ultrafast opti-
cal properties of metals and intrinsic and geometry-related SPP behavior allow for
spatio-temporal nano-imaging in a scanning probe configuration. Together with the
nonlinear optical response of the tips and associated symmetry selectivity, this opens
the door for deterministic few-femtosecond optical control on the nanoscale.

More generally, the design and optimization of optical antennas for nonlinear
applications requires the ability to accurately characterize field enhancement and
mode distribution properties within an antenna. Both electron-based techniques and
photon-based techniques have been used for antenna characterization. Conventional
far-field optical characterization can provide information about the interaction be-
tween an optical antenna and propagating light, such as the relationship between
device geometry and resonant frequency. While this can be applied over a broad
frequency range, it suffers from comparatively low spatial resolution, and the linear
response of an antenna does not necessarily predict the nonlinear response, due to,
for example, coupling between the driven plasmon and surrounding dielectric reso-
nances. SHG, two-photon photoluminescence, or FWM can provide slightly higher
spatial resolution and more accurate determination of nonlinear spectral properties,
but do not provide knowledge of the underlying resonant modes and their associated
spatial field distribution within an antenna. Electronic techniques, such as electron
energy loss spectroscopy (EELS), transmission electron microscopy (TEM), and
cathodoluminescence can facilitate the extraction of spatially detailed information,
with nanometer resolution of modes and plasmonic field enhancement.

In recent years, near-field optical techniques such as scattering-scanning near-
field optical microscopy (s-SNOM) have been utilized for high spatial resolution
mapping of linear and nonlinear antenna properties, offering information about the
local optical electric field magnitude and phase and interactions of modes in cou-
pled nano-optical plasmonic and optical antenna structures. With these techniques
it is possible to spatially and spectrally probe the microscopic electric field distribu-
tion, and correlate details of the field with geometrical features. Such measurements
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have demonstrated spectral shifts between near-field and far-field, and confirmed
that within nanoparticle geometries the nonlinear response remains sensitive to devi-
ations in shape and other defects. These techniques are applicable to various antenna
geometries and wavelengths, provide design criteria for more complex architectures
and modeling, and can facilitate impedance matching of optical antennas to quantum
systems [56].

The adiabatic focusing tips provide an avenue to extend ultrafast spectroscopic
imaging from its conventional far-field spatial resolution limit to the nanoscale. His-
torically, the development of femtosecond pulsed lasers has enabled the investigation
of ultrafast dynamics on the characteristic time scales of the elementary electronic
and vibrational excitations in matter, with direct and selective spectroscopic access
to the corresponding energy levels. The combination with spectral pulse shaping [70]
provides the additional capability to control the coherent evolution of these quantum
excitations (quantum coherent control), which allows steering of chemical reactions
or control of optical and electronic material properties [71].

It would be highly desirable to extend the spatial resolution to the nanoscale to
simultaneously access ultrafast dynamics on their associated natural length scales
of the elementary electronic, visible, and spin excitations. The potential use of plas-
monic properties to achieve this nanometer-femtosecond spatio-temporal control of
optical excitations for imaging and spectroscopy has attracted much interest. With
such a nano-optical technique, individual molecules, quantum dots, and plasmonic
structures, for example, could be investigated even in dense inhomogeneous me-
dia, in addition to spatial and non-local dynamics to probe transport, propagation,
and spatial coupling properties. The adiabatic focusing tips are one optical antenna
concept for overcoming the diffraction limit and providing the desired high spatial
field localization, with high bandwidth, and high off-resonant field enhancement thus
supporting even the shortest possible few-fs optical pulses.

Quantum dots

J-aggregates
Dye molecules

x
y

SPP

Grating tip
τ

nω, ∆ω...

feedback

Fig. 7.20 Implementation of nanofocused, background-free coherent control and interaction
dynamics experiments on single quantum emitter. Feedback for optimization is based on the lumi-
nescent or nonlinear response of the coupled tip-sample system
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A possible implementation of adiabatic nanofocusing for imaging and quantum
coherent control is shown in Fig. 7.20. Nanofocusing in combination with a pulse
shaper can be used for linear, nonlinear, and ultrafast imaging of individual quantum
systems or mesoscale variations in bulk and dense media. The ability to control
pulse shape and phase enables pump-probe techniques including collinear FWM
and 2D spectroscopy. With feedback on the nonlinear response nω,∆ω, etc. of
the coupled tip-sample system, the extension to quantum coherent control of the
excitation pathways and evolution of the quantum system can also be realized.

7.6 Outlook

In spite of the importance of the nonlinear and ultrafast properties of metals in gen-
eral, and metal surfaces and nanostructures in particular, for the understanding of
phenomena such as enhancement and dephasing associated with plasmonic excita-
tions, considerably less work has focused on these aspects compared to linear and
continuous wave spectroscopies. Here we have attempted to summarize the fun-
damental properties of metals and their plasmonic excitations and their effect on
nonlinear behavior in order to provide a guide for future extensions of plasmonic
studies. Optimization and control of these properties will be important for increasing
sensitivity and efficiency in a wide variety of sensing and optical switching applica-
tions, chemical spectroscopy, nano-scale imaging, or coherent control on the single
quantum limit. Thus far little nanoscale imaging using a nonlinear response of a
material system has been demonstrated [72], though there has been interest in fur-
ther increasing the nonlinear response through engineered nanostructures with a bulk
nonlinear material at the tip, which in combination with field enhancement could pro-
vide high wave-mixing conversion efficiencies and provide access to the additional
spectroscopic and symmetry degrees of freedom enabled by nonlinear techniques.

In the ultrafast regime, recent work has demonstrated the control of mode coher-
ence in plasmonic systems [73], in spite of the extremely short plasmon dephasing
times. Control of coupled plasmonic-photonic modes, which have longer dephasing
times and are therefore easier to direct, has been demonstrated, as well as nonlinear
wavemixing in plasmonic-photonic waveguides [57]. Furthermore, taking advantage
of SPP properties such as nanofocusing provides one of the most promising routes to
achieving full spatio-temporal control of individual nanostructures and nanosystems.
This would enable the investigation of ultrafast dynamics on the characteristic time
scales of the elementary electronic and vibrational excitations in matter, and with
direct and selective spectroscopic access to the corresponding energy levels.

Plasmonic field enhancement has also been proposed as a means to achieve
the necessary peak intensities for high harmonic generation (HHG). However, the
nanoscopic interaction volume for plasmonic structures in comparison to conven-
tional intracavity HHG suggests that the HHG yield would be small [74]. Multiphoton
or high field fluorescence processes can however be effective below the ionization
threshold [75], in addition to electron emission [76]. Strong field gradients could
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be utilized for nanomanipulation and trapping [77]. Additionally, strong coupling
of quantum states to light can lead to qualitatively new nonlinear optics, beyond
the perturbative regime discussed here. Structures based on molecular, quantum-
dot, or quantum-wire exciton resonances coupled to plasmonic metal nanostructures
can be optimized to form hybrid modes with large optical nonlinearities as a re-
sult of the quantum interference of the exciton dipole oscillation and the plasmonic
modes, providing new quantum states and allowing new avenues for ultrafast control
[78]. Further improvements in design and control or plasmonic structures could also
provide access to non-local nonlinear effects.
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