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Abstract

The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of,
e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true
optical antenna would, on a qualitatively new level, control the light–matter interaction on the nanoscale for
controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution
microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully
been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas
due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the
RF, where exact design rules for antennas, waveguides, and antenna–load matching in terms of their impedances are
well established, substantial physical differences limit the simple extension of the RF concepts into the optical
regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals,
metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon
polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design
strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational,
electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for
characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is
currently challenged at all the levels of design, fabrication, and characterization.

Here we generalize the ideal antenna–load interaction at optical frequencies, characterized by three main steps:
(i) far-field reception of a propagating mode exciting an antenna resonance, (ii) subsequent transformation of that
mode into a nanoscale spatial localization, and (iii) near-field coupling via an enhanced local density of states to a
quantum load. These three steps define the goal of efficient transformation of incident radiation into a quantum
excitation in an impedance-matched fashion. We review the physical basis of the light–matter interaction at the
transition from the RF to optical regime, discuss the extension of antenna theory as needed for the design of
impedance-matched optical antenna–load coupled systems, and provide several examples of the state of the art in
design strategies and suggest future extensions. We furthermore suggest new performance metrics based on the
combination of electric vector field, field enhancement and capture cross section measurement to aid in comparison
between different antenna designs and optimization of optical antenna performance within the physical parameter
space.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Electromagnetic (EM) waves from low radiofrequencies (RF)
to high optical frequencies pervade our environment. They
interact with matter by coupling directly to the motion of
charge carriers. This carrier motion can be associated with
characteristic spectral resonances resulting from absorption
and emission of EM energy. These resonances can be broken
into two types. Intrinsic resonances reflect underlying material
parameters related to the electronic and lattice structure of the
constituent matter, its chemical bonds, and crystallographic
and symmetry properties [1, 2]. Extrinsic resonances, on
the other hand, are dependent on the size, geometry, and
material composition of an object. Devices can be engineered
with extrinsic resonances defined with respect to oscillator
strength, bandwidth, and resonant frequency [3–5].

A common implementation of resonance engineering is
the RF antenna operating in the 103–1011 Hz range [6–10].
According to the IEEE Standard Definitions of Terms for
Antennas, an antenna is defined as the ‘part of a transmitting
or receiving system that is designed to radiate or to receive
electromagnetic waves’ [11]. Depending on the resonance
properties, environment, and use, an antenna can be designed
in all sizes and shapes including linear dipoles, horns, dishes,
apertures, and patches. Despite the different form factors, all
antennas operate under the same principle. They mediate the
transformation between propagating EM energy and localized
or confined energy delivered to a load or emitted from a source
via coupling of the EM energy to electron motion.

Although originally conceived for radio waves, the
antenna definition above notably does not constrain the
frequency range of operation. The same transformation prin-
ciple could conceptually be expanded to optical frequencies.
As has been observed in the field of silicon electronics,
device size can be scaled down by orders of magnitude
provided the physical mechanisms underlying the device
operation remain the same. However, despite great interest
and several attempts to scale the rich tool set developed
for RF antenna design to optical frequencies, there is a
qualitative change in interaction and physical principles
below the millimetre range. RF antennas operate in the
Hagen–Rubens frequency regime where the frequency of
operation is much less than the Drude–Sommerfeld electron
relaxation rate and optical properties are largely defined by
the dc conductivity. However, for metals at optical frequencies
the imaginary part of the conductivity exceeds the real part,
and the magnitude of the real part of the dielectric function
decreases significantly with frequency [1]. Consequently, as
shown in figure 1, extrinsic resonances become the result
of, e.g., surface-bound localized plasmon polaritons rather
than loosely bound antenna current resonances. Moreover,
with device size defined by the wavelength of operation λ,
the feature sizes of plasmonic antennas are on the order of
10–100 nm, comparable to the length scales of the elementary
intrinsic excitations. The Drude–Sommerfeld mean free path,
or distance between scattering events of free electrons in
gold, for example, is about 30 nm [2], which can give rise
to finite-size effects and deviations from bulk-like material

response. Scaling antenna technology to the optical regime is
thus associated with the emergence of frequency-dependent
material parameters, increased Ohmic loss, different length
scales and proximity ranges of interest, and the resulting
inapplicability of many assumptions and approximations
often used in RF antenna design and analysis. Many years
of antenna design extrapolating RF concepts have shown
that the different physical mechanisms at work including the
four orders of magnitude conductivity difference in metals
between RF and optical frequencies calls for a qualitatively
different approach.

Despite the different physical mechanisms at optical
frequencies, or indeed, in part because of them, nanometre and
micrometre sized metallic structures have demonstrated some
capability to collect, control, and confine optical EM fields.
Thus they have been called ‘optical antennas’ in analogy
to their RF counterparts [14–21]. Many proposed optical
antennas take advantage of the high local charge densities
associated with, e.g., plasmonic lenses [22–24], plasmonic
waveguides [25–30], or resonant metallic particles to create
local (near-field) electromagnetic fields enhanced in intensity
with respect to an incident excitation field. These resonant
metallic structures have found some applications in the IR and
visible regimes in the fields of optical sensing [13, 31–35],
biosensing [36–38], plasmonics [39–44], optical microscopy
and nanoscopy [45–51], microspectroscopy [30, 52, 53], and
radiative decay engineering [54–65], among others.

Nevertheless, there seem to be several misconceptions
regarding the applicability and limitations of the different
analyses drawn between optical and RF antennas. RF antenna
design benefits from standard materials, methods, and tools
such as discrete resistive, capacitive, and inductive elements
and conventional feed mechanisms that do not exist for
optical antennas, necessitating different design strategies
which have yet to be developed. Nor does optical antenna
design have a standard metric by which the performance of
different antennas may be compared. Optical antennas can be
characterized by field enhancement, but this fails to account
for capture efficiency, footprint, Ohmic losses, etc.

The ultimate goal in the development of optical antennas
is to facilitate the delivery of light to nanoscale receivers
(or reciprocally the emission from sources). This delivery
should be efficient in terms of total captured power
and minimal transmission or transformation loss. A high
performance optical antenna would allow for a qualitatively
new level of control of e.g. the light–matter interaction. The
application of such optical antennas would enhance or enable
nanoscale signal transduction, radiative decay engineering,
quantum coherent control, super-resolution microscopy, and
unprecedented sensitivity in a broad range of spectroscopies.

An antenna must capture light and prepare it for
delivery to a load. The generalized ideal system would
perform the following functions (given here for a system
in receiving mode): (i) reception of far-field propagating
light exciting an extrinsic antenna resonance and (ii)
subsequent transformation of that mode into a confined
spatial localization. These two functions closely resemble
the RF analogue. Interconnecting electronic circuitry used to
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Figure 1. Scaling of antennas from radio to optical frequencies. Optical antennas inhabit the infrared and visible frequency regimes, from
around 10 THz to 1 PHz. Antennas in this range have dimensions and structural features that are on the size scale of the mean free path of
electrons, and resonance frequencies approximately equal to the electron relaxation rate. Consequently, new effects not seen for RF
antennas associated with the lower real conductivity of the metal arise at high frequencies, including greater absorptive losses, modified
effective wavelength scaling, and changes in the radiative emission rate. (a) Silver nanoprism optical antenna adapted from [12]. Copyright
2008 American Chemical Society. (b) Linear coupled dimer optical antenna. c) IR spiral antenna reprinted from [13] with permission from
Elsevier, copyright 1998. (d) 3D Helical THz antenna reprinted from [175] with permission from John Wiley and Sons, copyright 2000.
(e) Television uplink dish antenna. (f) Radio wire antenna.

Figure 2. The receive–transform–couple (RTC) scheme for energy delivery to a nanoload, and the complementary scheme for extraction of
energy from a source. A far- to near-field transformation device optimizes the interaction between the propagating light and the nano-optical
element. Similarly, light emission by a nano-optical device can be enhanced in terms of the radiative rate by using a near- to far-field
transformer to mediate energy transfer into propagating modes.

connect RF components is not available for optical antennas,
however. Instead, optical electromagnetic interactions have
to be controlled via the local density of states (LDOS) [61,
66]. Energy delivery to a load may occur through an
electromagnetic near-field interaction. Thus we add a third
function to the general model, namely near-field coupling via
an enhanced local density of states to a quantum load.

Some of these concepts have been discussed previously in
specific contexts. Figure 2 shows our generalization of these
concepts which may help bring optical antenna design onto
a common footing, serving as a reference and benchmark
by which different light transformation strategies may be
compared. Far-field propagating EM energy is received and
concentrated by a transforming device for coupling to a load.
This constitutes a receive–transform–couple (RTC) delivery
scheme which will be a major theme of this work. The

transforming device may consist of a single element or two
coupled elements (for example a coupler and a waveguide).
In the optical frequency regime, the load may also be
a molecule, atom, quantum dot, or metallic particle, for
example, instead of an electronic circuit as in the RF case. A
similar transformation can assist the reverse process, namely
collecting energy from a source and emitting it radiatively.

Many excellent reviews have discussed the state of the
art in optical antennas [14–20]. Here we attempt to provide a
more generalized perspective addressing several fundamental
aspects. We consider optical nanofocusing devices in the
context of the ultimate goal of providing a highly efficient
method for delivering light to the nanoscale. We give a
critical account of the state of the art of the design of
impedance-matched optical antenna-coupled systems. This
includes a discussion of different ways to describe impedance
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and impedance matching, including more conventional input
impedance descriptions as well as interaction through the
local density of states where antenna–load coupling occurs
through the near-field. We note general limitations, special
requirements, and areas where more investigation is merited
in order to develop more efficient optoelectronic devices. We
compare and contrast antennas with excitation and radiative
emission of quantum systems. We extend the discussion to
the ability of antennas to control optical excitations in the
temporal domain down to the femtosecond timescale.

The paper is organized as follows: first we discuss linear
antenna resonances and impedance in order to provide a
basis for the discussion of the extension of RF designs to
optical frequencies. Next we highlight the different physical
mechanisms at work between RF and optical antennas through
a discussion of the properties of metals at optical frequencies
where conductivity is characterized by a decreasing real
part and substantial imaginary part. The implications of
the geometric and material differences between RF and
optical frequency antennas are then examined in the context
of reception of incident light via extrinsic optical antenna
resonances governed by surface plasmon/phonon polaritons.
Next, we examine energy transformation and coupling to
a load, in terms of suggested methods for dealing with
impedance of optical antennas using input impedance at
an antenna gap. Then we consider light–matter interactions
at the nanoscale through a quantum level description and
discuss the competition between radiative and nonradiative
excitation decay channels in antennas and quantum emitters.
Using the example of a new type of antenna in the form
of a metal cone, we demonstrate how standardized optical
antenna parameter characterization can aid comparisons
between different architectures in the RTC paradigm. The
final section reports on our measurement techniques of
near-field mapping and characterization of field enhancement
of optical antennas to assign performance metrics that can
evaluate the performance of each stage of the RTC process.
In particular, we focus on the nano-optical vector network
analyser for full EM characterization.

2. Radiofrequency antennas

The electromagnetic properties, geometry, material param-
eters, and resonance characteristics of an antenna are
intrinsically linked. This section discusses how resonance is
related to antenna impedance. We examine antennas as they
are analysed in the RF for two reasons. First, this provides a
basis for nomenclature and expectations that we shall apply to
optical antennas. Second, the maturity of understanding of RF
antennas and the cohesiveness of analytical and measurement
techniques set standards that shall be adopted for optical
antennas as far as possible.

2.1. Impedance

The frequency-dependent complex conductivity of a material
σ̃ (ω) relates the total local current density J(ω) as the

fundamental material response to the local electric field E(ω)

as [1]

J(ω) = σ̃ (ω)E(ω). (1)

This relationship is sometimes referred to as the microscopic
form of Ohm’s law.

The impedance Z of a homogeneous volume of length
L and cross section A is linked to the intrinsic impedivity
(i.e. complex resistivity) of the material ρ̃(ω) = 1/σ̃ (ω) by

Z = ρ̃
L
A

. (2)

Assuming a homogeneous current density normal to the cross
section A, and an electric field oriented parallel to the length L,
the current through the volume and voltage across the volume
can be assigned as I = |J|A and V = |E|L, respectively.
Combining these with equation (2), one recovers the well
known macroscopic form of Ohm’s law, Z = V/I.

The impedance Z is complex in general, the sum of the
real resistance R and imaginary reactance X, both with units
of ohms (�). Z is related to the material parameters of the
conducting medium by [1, 67, 68]

Z = R − iX =
�

µ

�
=

�
iωµ

iω Re(�) − Re(σ̃ )
, (3)

where µ = µ0µr and � = �0�r are the complex permeability
and permittivity of the material, respectively1.

In circuits, impedance quantifies the extent to which
current is inhibited through an electronic element. The
resistance corresponds to temporally in-phase voltage and
current, leading to real power loss (i.e. through heat). The
reactance, on the other hand, is related to power stored in the
electric or magnetic field.

More generally, any medium can be described in terms
of its impedance using the right-hand side of equation (3). An
alternative form in terms of electric and magnetic fields is the
wave impedance defined at location r as

η = E(r)/H(r), (4)

again measured in units of ohms (�). η is used instead of Z to
indicate whether the impedance relates to the EM fields or the
circuit bound voltage and current. Nevertheless, equations (3)
and (4) are conceptually equivalent. At an interface where an
EM wave penetrates into a medium, the surface impedance ZS
may be used [1].

The impedance of free space η0 is calculated from (3)
as η0 = 376.7 � for a transverse electromagnetic (TEM)
wave using the permittivity and permeability of vacuum,
�0 = 8.854 × 10−12 F m−1 and µ0 = 4.0π × 10−7 H m−1,
respectively. It is important to note that this impedance η0 is
not applicable in regions where the electric field and magnetic
field are out of phase, as in the near-field of an antenna or
inside the medium (see section 2.5 for the definition of the

1 In engineering, impedance is usually written as Z = R + jX. The opposite
signs for the imaginary numbers i and j result from the different sense of
rotation of the time-harmonic exponentials exp{−iωt} and exp{jωt} typically
used in physics versus engineering, respectively.
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near-field). In the near-field of an electrically short electric
dipole, for example, the wave impedance2 is complex and is
associated with a greater value of |E|/|H| compared to free
space [1, 6].

2.2. Input impedance in conventional antennas

In order to better understand the requirements and limitations
of impedance matching in the optical regime, we first discuss
impedance in a conventional sense, as it is understood for,
e.g., RF antennas. It is well known that maximum power
transfer between two circuits requires that their impedances
be complex conjugates of each other at the junction [69].
The selection of circuit parameters to achieve this conjugate
condition is called impedance matching. In traditional antenna
design, impedance is characterized at the feed point of the
antenna, where it makes a junction with the rest of the
circuit. This input impedance is a critical antenna parameter
defined as the ratio of voltage to current at the feed point:
Zin = Vin/Iin = RA − iXA. The real part of the antenna
input impedance RA can be broken into two components
RA = Rr + R�. Rr is the radiation resistance, responsible for
power lost by radiation (or scattering, i.e., reradiation in the
case of a receiving antenna), and R� is the loss resistance,
responsible for power lost through Ohmic heat (i.e., absorbed
power) [6–8].

As an example, figure 3 shows an antenna connected to
a load via a transmission line in both cartoon (a) and circuit
schematic (b) forms. An incident wave creates voltage VT
and current IT on the antenna. Due to the transmission line
characteristic impedance Z0, the transmission line presents
a modified load impedance Z�

L = V12/IT at the interface at
terminals 1 and 2. Impedance matching occurs when Z�

L = Z∗
A

(where the asterisk represents the complex conjugate). If the
connection between the load and the transmission line is also
impedance matched, the power delivered to the load by the
antenna is maximum.

The antenna is a tool to convert electrical energy in the
form of electric current or voltage into far-field propagating
energy, or vice versa. That is, in a conventional sense, the
antenna itself is a device to impedance match a circuit
to free space. Poor impedance matching results in power
reflections at the interface between circuit components, and
correspondingly poor power transduction between them. In
the case of a poor impedance match, the antenna will still
transfer radiant energy to or from free space. For example,
even the open terminal of an abruptly terminating waveguide
such as a severed coaxial cable fed by a time-harmonic voltage
source can emit radiation, albeit poorly.

2.3. Limit of delivered power

Even a perfectly impedance-matched antenna does not deliver
all the energy available from the incident wave to the

2 In the near-field, it could be argued that the ratio of the electric to magnetic
field should not be called wave impedance, since the near-field implies that the
field is non-propagating. However, in the interest of consistent nomenclature,
we retain this terminology.

Figure 3. A load-coupled antenna illuminated by an incident wave
in cartoon (a) and circuit schematic (b) forms. The wave produces
voltage VT on the antenna with impedance ZA. The load impedance
ZL is transformed by the transmission line, becoming Z�

L at the
junction at points 1 and 2. Impedance matching occurs when
Z�

L = Z∗
A.

load. Impedance matching corresponds to maximum power
transfer, but even in the ideal case, only half of the captured
power is delivered to the load, and the rest is reradiated or lost
as heat [6].

The power delivered to each resistive element (Ri) in
figure 3 is given by Pi = 0.5|IT|2Ri with current IT =
VT/[RL + RA − i(XL + XA)] [6]. This can be used to
compare the power dissipated by the antenna, PA = P� +
Pr, to the power delivered to the load PL. Figure 4 shows
PA and PL normalized to the maximum load power as a
function of RL/RA. When the load resistance is much lower
than the antenna resistance, the power delivered to the load
approaches zero, and all the power is lost as heat or reradiated.
Conversely, if the load resistance is much higher than the
antenna resistance, both PA and PL decrease because IT
decreases. It is interesting to note that with increased RL/RA,
PA decreases faster than PL. Thus if one wishes to minimize
scattering (Pr) or absorption (P�) while still maintaining a
substantial amount of load power (although not maximum),
one could deliberately mismatch the impedances.

In general, the input impedance of the antenna ZA
depends on the geometry of the antenna, feed location,
and mode of operation. The dependence of the input
(circuit) impedance of an antenna on the antenna geometry,
surrounding medium, and local electronic circuit environment
has been the subject of intense study in RF engineering [6,
10, 70]. As a reference, the input impedance of a classical
L = λ/2 centre-fed thin (i.e. L � a, where a is the wire
radius) wire antenna operating at the fundamental dipolar
resonance, and isolated in vacuum is ZA = 73.1 − i42.5 �, as
calculated analytically using the induced electromotive force
(EMF) method (integration of the Poynting vector over the
surface of the antenna), or numerically using the method of
moments [6].

5



Nanotechnology 23 (2012) 444001 Topical Review

Figure 4. Power delivered to an antenna-coupled load, PL, as a
function of RL/RA with the constraint XA = −XL. Maximum power
transfer to the load occurs when RL/RA = 1. Even when this
condition is met, only half of the power is delivered to the load; the
rest is absorbed or reradiated via PA.

2.4. Antenna resonance

With its simple geometry, the linear wire antenna often
serves as a model for studying antenna properties. The
resonant length tuning of the wire antenna has been studied
in great depth [10, 70]. However, only for a very thin wire
(radius a � λ) or cylinder of infinite length does an exact
analytical solution for associated current resonances and
electromagnetic fields exist. For a cylinder of finite radius
and length a solution may be readily calculated using iterative
or matrix methods to solve Hallén’s integral equation or
Pocklington’s integral equation, or using numerical (e.g. finite
element) approaches [70, 71].

One can gain an often satisfactory semi-quantitative
understanding of the antenna resonances using two approxi-
mations: first, the linear antenna can be approximated as an
elongated prolate ellipsoid with eccentricity near unity. The
second is perfect conduction, R� = 0 �, an approximation
used often at RF due to the very high conductivity of metals
at low frequencies, an approximation that we shall see fails
at optical frequencies. Under these approximations, one finds
the familiar successive sinusoidal oscillatory resonant current
modes of order p with p + 1 nodes along the long axis of
the ellipse. Resonance is achieved when the total length L ≈
pλ/2, where λ is the wavelength of the EM wave, resulting in
a large current magnitude.

For a thin centre-fed dipole with finite length L, oriented
in ẑ, and with maximum current I0, the current standing
wave is approximated by a sinusoid, with forced nulls at
the antenna end points, and forced continuity at the feed
point, yielding a symmetric current distribution [6, 9, 70]
I(z) = I0 sin [k (L/2 − |z|)] as shown in figure 5(a). While
the current of actual antennas is not exactly sinusoidal,
the correction is minor near resonance, and the sinusoidal
approximation is appropriate for calculating the far-field and
radiation resistance of thin linear antennas [10].

In order to derive the impedance, an antenna can be
viewed as an RLC circuit. In a series RLC circuit, current
resonance occurs when the series impedance Z is purely
real (i.e., X = 0 �) [69]. Indeed, at resonance, the inductive
impedance of the antenna (due to the current in the wire
arms) and the capacitive impedance (due to the distance
between the oppositely charged wire arm electrodes) cancel.
Therefore, the resonance depends sensitively on the antenna
length L. Figure 5(b) shows the calculated radiated power
Prad, radiation resistance Rr, reactance Xr (referred to the
location of the current maximum), and input resistance
Rin (i.e., resistance at the feed point) as a function of
wavelength-normalized antenna length for a thin perfectly
conducting linear centre-fed wire antenna with a sinusoidal
current distribution. The radiation resistance and reactance at
the current maximum are calculated according to the solution
for the impedance using the EMF method with the assumption
of a sinusoidal current distribution as [6]

2π

η
Rr = C + ln(kL) − Ci(kL)

+ 1
2 sin(kL) [Si(2kL) − 2Si(kL)]

+ 1
2 cos(kL)[C + ln(kL/2)

+ Ci(2kL) − 2Ci(kL)], (5)

and
4π

η
Xr = 2Si(kL) + cos(kL) [2Si(kL) − Si(2kL)]

− sin(kL)

�
2Ci(kL) − Ci(2kL) − Ci

�
2ka2

L

��

(6)

where C = 0.5772 (Euler’s constant) and Ci and Si are the
cosine and sine integrals.

As seen in figure 5(b), resonances of a thin wire antenna
occur when the length L is near an integer multiple of λ/2
(the exact value for the fundamental dipole resonance is
L = 0.4857λ for a � λ) [9]. Resonances near even integer
multiples of λ/2, called open-circuit resonances, are difficult
to drive in practice by feeding at the centre of the antenna
due to the extremely high input resistance. Resonances at odd
multiples of λ/2 are called short-circuit resonances, because
current flows into the antenna with very little resistance [72].

2.5. Far- and near-field regions

The primary emphasis of RF antenna theory is on far-field
function for applications such as communication and remote
sensing. The load interaction in these cases can often be
handled separately as a circuit problem. Optical antennas
must couple to far-field light as well, but significant
emphasis is also placed on the near-field where antenna–load
and antenna–emitter interactions take place. Between these
regions the characteristics of the field change significantly.
The properties of these different field regions can most easily
be illustrated by considering an infinitesimally small electric
dipole.
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Figure 5. (a) Approximate sinusoidal current oscillations of centre-fed thin linear antennas of length L. (b) Radiated power Prad, radiation
resistance Rrad, reactance Xrad referred to the current maximum, and input resistance Rin (i.e. resistance at the central feed point) as a
function of wavelength-normalized antenna length for a thin linear centre-fed wire antenna with a sinusoidal current distribution. Current
resonances occur when X = 0 (capacitive reactance cancels out inductive reactance, as in a series LC circuit), when the length is near
multiples of λ/2.

Following [6], the solutions for the fields of an
infinitesimal electric dipole antenna with length L � λ, a
positionally invariant source current I0 (i.e. constant current
along the length of the antenna), and wavevector k = ω/c are

Hr = Hθ = Eφ = 0 (7)

Hφ = −i
kI0L sin θ

4πr

�
1 + i

kr

�
eikr (8)

Er = η
I0L cos θ

2πr2

�
1 + i

kr

�
eikr (9)

Eθ = −iη
kI0L sin θ

4πr

�
1 + i

kr
− 1

(kr)2

�
eikr, (10)

where r, θ , and φ are the spherical coordinates associated with
distance from the dipole, elevation angle, and azimuth angle,
respectively, as shown in figure 6. Here the dipole itself is
oriented in θ = 0.

The character of the field changes with increased distance
r, so the space around an antenna is conventionally broken
into three field regions [6]. Nearest to the antenna is the
reactive near-field. In this region, the reactive field dominates.
This region extends to about r = 0.62

�
D3/λ, where D is the

largest dimension of the antenna. Beyond this is the radiating
near-field (or Fresnel) region. In this region the radiative fields
dominate, but there is still a substantial reactive component.
The boundary of this region is r = 2D2/λ. Beyond this is
the far-field (or Fraunhofer) region. There the r−2 and r−3

terms are small, with the result that the 1/r terms of the Eθ

and Hφ components dominate. In this region the radiation
pattern of the antenna is largely independent of distance and
the electromagnetic field approximates a TEM plane wave.

2.6. The diffraction limit of far-field optics

One way to increase the energy density at the location
of a load is by focusing incident radiation to the volume
of the load. However, confinement of light to the desired

Figure 6. The space around an antenna is divided into three field
regions with different field characteristics: the reactive near-field,
radiating near-field, and far-field, in order of increasing distance
from the antenna r. While RF antennas often operate in far-field
applications such as communication and remote sensing, optical
antennas often operate in the near-field.

nanometre dimensions for efficient interaction with quantum
loads cannot be achieved with conventional far-field focusing
optics. Spatial nanoconfinement of light requires near-field
techniques to overcome the diffraction limit of far-field
focusing. This can be understood by considering the spatial
Fourier spectrum of a single point emitter located at the
origin of a Cartesian coordinate system. For an infinitesimally
small source the emission is composed of a continuum of
all wavevector components kx, ky, and kz. The free-space
propagating mode, however, can only sustain waves with
a specific relationship between frequency and wavevector
(2πν)/(2π/λ) = ω/k = c, where ν, λ, ω, and c are the
frequency, wavelength, angular frequency, and propagation
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speed of the wave, respectively. Therefore, waves with spatial
frequency components greater than the free-space wavevector
k2

x + k2
y + k2

z > |k|2 are evanescent and are attenuated quickly
with distance; propagation acts as a low-pass frequency
filter [68, 73]. Similarly, focusing a z-propagating wave
to an arbitrarily small size would require arbitrarily high
transverse spatial frequency components kx and ky, which are
not available in far-field (i.e., propagating) light.

Furthermore, if the emitted light is collected by, e.g., an
aperture or lens of diameter D = 2a at a distance R from
the point source, then the kx and ky components are further
reduced by the perimeter of the collection aperture. This gives
rise to the well known diffraction limit. The Rayleigh criterion
defines the minimum resolvable size scale in the far-field as

d ≥ 3.83
π

λ
R
2a

≈ 1.22
λ

2NA
, (11)

where NA is the numerical aperture. In practice, using
conventional optics the spatial resolution of an imaging
system can be roughly estimated to about λ/2, e.g. ≈200 nm
for blue light, and ≈350 nm for red light.

The general goal of optical antennas is to focus light to
dimensions of a few nanometres not only for the purpose
of ultrahigh spatial resolution imaging using near-field
scanning probe techniques, but, as already indicated above,
sub-diffraction-limited focusing is an essential concept of
enhanced radiation transfer to a quantum load. Higher
spatial resolution can be achieved by taking advantage of
the evanescent wavevectors associated with high spatial
frequency components of light before they evanescently
decay. The region where these wavevector components still
maintain a substantial magnitude is referred to as the optical
near-field.

3. Metals at optical frequencies

One of the primary differences between conventional
(RF) and optical antennas is the substantial increase in
resistance in metals with decreasing wavelength beyond
the millimetre regime. As mentioned above, RF antenna
theory often implements an assumption of negligible Ohmic
loss (compared to radiative loss) owing to the high DC
conductivity. Optical antennas, however, are subject to
significant and largely intrinsic Ohmic loss and a current
phase offset with respect to the incident driving electric field,
as described in this section.

3.1. Drude–Sommerfeld free-electron model

Within the Drude–Sommerfeld free-electron model, noble
metals are described as gases of noninteracting electrons
with a frequency-dependent dielectric function. The dielectric
function �r(ω) is derived by solving the equation of motion
for the electrons driven by a time-harmonic electric field and
introducing an empirical effective electron relaxation time
τD [1]. The solution is similar to that of a damped harmonic
oscillator, but, with no restoring force, an intrinsic resonance

occurs at ω = 0 s−1 (the Drude peak) [74]. The resulting
frequency dependence of �r(ω) is given by

�r(ω) = �1(ω) + i�2(ω) = 1 −
ω2

p

ω2 + iγω
, (12)

where γ = 1/τD is the electron relaxation rate, ωp =
(Ne2/�0m∗)1/2 is the plasma frequency, N is the number
of electrons per unit volume, e = 1.602 × 10−19 C is
the electron charge, �0 = 8.854 × 10−12 F m−1 is the
permittivity of free space, and m∗ is the effective mass
of the electron, different from the rest mass me = 9.11 ×
10−31 kg. As the mean free time between electron scattering
events within the free-electron model, the relaxation time
τD parameterizes the cumulative effects of various electron
scattering processes. The relaxation rate has contributions
from electron–electron scattering, temperature-dependent
electron–phonon scattering, scattering at grain boundaries,
impurity and defect scattering, and surface roughness
scattering contributions [75, 76]. However, the model does not
include absorption via interband transitions. The parameters γ
and ωp can be extracted from a fit to experimental data below
the onset of interband transitions [77–79]. As an example
for gold, resulting fit parameters are approximately τD =
1/γ = 14 ± 3 fs and h̄ωp = 8.48 eV, though there can be
significant variation depending on the measurement technique
and sample properties [80]. The Drude model is purely
phenomenological and does not provide physical insight into
the damping mechanism (i.e., individual effects of sample
thickness, surface roughness, volume fraction of crystal
boundaries, impurities, electron–electron or electron–phonon
scattering rate, or finite-size effects). It nevertheless describes
the relationship between the permittivity and the collective
electron damping in the low-frequency region dominated
by the free-carrier response, and is thus sufficient for
the purpose of understanding the main features of the
frequency-dependent conductivity in the transition regime
between RF and optical antennas.

3.2. Conductivity at optical frequencies

In metals, the complex conductivity σ̃ (ω) is of particular
importance as the real part defines Ohmic losses and the
imaginary part is responsible for a phase offset between the
local electric field and current density [1]. σ̃ (ω) is related to
the dielectric function as

σ̃ (ω) = σ1 + iσ2 = −i�0ω(�r − 1). (13)

Figure 7 shows the complex conductivity σ̃ (ω) = σ1(ω) +
iσ2(ω) of the Drude–Sommerfeld free-electron model, real
part (solid line) and imaginary part (dashed line), with τD =
14 fs and h̄ωp = 8.48 eV as found by a fit to experimental data
for gold as a representative example, with similar behaviour
for most metals with free valence electrons [80].

The frequency dependence of the conductivity allows
for the assignment of four regimes with different material
responses. Following [1], first is the long wavelength region
(I, λ � 1000 µm) where RF antennas operate, called the
Hagen–Rubens regime. It is associated with σ1 � σ2. In
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Figure 7. The complex conductivity of gold
σ̃ (ω) = σ1(ω) + iσ2(ω) according to the Drude–Sommerfeld
free-electron model, real part (solid line) and imaginary part
(dashed line), with τD = 14 fs and h̄ωp = 8.48 eV. While RF
antennas exhibit an extremely high real conductivity and low
imaginary part (region I), optical antennas are subject to low real
conductivity, leading to significant Ohmic loss (regions II and III).
Region IV is the transparent regime where light has little effect on
electron motion [1, 80].

this range, the response of the free electrons to an EM
field is governed primarily by the DC conductivity. The
electron motion is in phase with the electric field. Next
in the far-IR is a transition regime (II), characterized by a
decreasing σ1 and an increasing σ2, with a crossover point
at angular frequency E/h̄ = γ = 1/τD, the relaxation rate.
This defines the lower edge of the relaxation regime (III).
This regime incorporates the mid- to near-IR spectral range.
It is characterized by a significantly reduced real part and
high imaginary part compared to the Hagen–Rubens regime,
and is thus associated with greater Ohmic energy damping
and a large phase offset between the excitation field and the
charge motion. This region extends to the plasma frequency.
For frequencies ω > ωp, the electrons only weakly respond
to the field oscillations, and light is able to pass through the
medium. This region is therefore called the transparent regime
(IV). Optical antennas operate in the second and third regions
since the interaction between light and charge carriers is much
lower in the transparent regime.

4. Optical antenna resonances

Antenna resonances were described above in terms of
standing current waves at RF. For optical antennas, resonances
are understood in terms of bound surface waves instead. This
physical difference is the main reason RF antenna design
rules are challenging to scale to optical frequencies, but it
is also responsible for the locally enhanced fields that make

Figure 8. SPP dispersion at the interface of vacuum and a Drude
metal (black solid line). At low frequencies, the SPP wavevector kx
is nearly equal to that of light indicated by the light line (blue
dashed). At high frequencies the wavevector mismatch between the
SPP and free-space light limits their interaction.

optical antennas useful for interactions with quantum loads.
Antenna resonances define the properties of the receiver of
the RTC system. The nature of these resonances and their
characteristics are the subjects of this section.

4.1. Surface plasmon polaritons

Electromagnetic boundary conditions at a metal–dielectric
interface allow for a surface wave solution, called a
surface plasmon polariton (SPP) [4]. SPPs are coherent
charge oscillations at the interface between a metal and a
dielectric, associated with a transverse magnetic (TM) surface
wave [81–83]. For an SPP travelling in the x-direction at the
interface between a metal (z < 0) and a dielectric (z > 0)
with respective relative permittivities �1 and �2, the dispersion
relation is given as

kx = k0

�
�1�2

�1 + �2
, (14)

where k0 = ω/c0 is the wavevector in vacuum and c0 is the
speed of light in vacuum.

Figure 8 shows the dispersion relation of an SPP at the
interface between a Drude (free-electron) metal and vacuum,
normalized by the plasma frequency ωp [1, 2]. At low (e.g., ra-
dio) frequencies, |�1| � 1. The ratio under the square root in
equation (14) therefore approaches unity, and the wavevector
of the surface wave is nearly equal to that of the propagating
wave governed by the light line kx ≈ k0, allowing SPP inter-
action with free-space modes. However, at high (e.g., optical)
frequencies (but below ωp), kx > k0, so the SPP and propa-
gating wave can interact only weakly, and the SPP is strongly
bound to the surface. Various methods may be employed to
overcome the momentum mismatch including increasing the
index of refraction of the dielectric on one side of a metal film,
or by making a grating at the interface [4, 39, 81].
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4.2. Spatial SPP behaviour

A nano-optical load can benefit from the concentrated EM
energy in the SPP evanescent field. The spatial extent of
the evanescent field of a SPP in the z-direction normal to
the surface is governed by the imaginary kz wavevector
component. The characteristic length lz gives the distance
from the surface at which |E(z)|/|E(z = 0)| = 1/e. For
medium i (metal, i = 1; dielectric, i = 2), with complex
dielectric function �i = ��

i + i���
i , lz is given by

lz,i = 1
Im{kz,i}

= λ

2π

�
��

1 + �2

�2
i

�1/2

. (15)

Figure 9(a) shows the SPP normalized electric field magnitude
along the z direction at a Drude metal/air interface for λ =
500, 750, and 1000 nm. Penetration into the air decreases
with decreasing wavelength, illustrating the bounded nature
of surface waves at higher frequencies compared to RF. The
field penetration into the metal is also called the skin depth
δ. Notably, as shown in figure 9(b), δ for gold, as calculated
from experimental data, is largely wavelength independent
throughout the near- to mid-IR range with δ ∼ 22 nm [80].
In the visible, the skin depth of the Drude free-electron metal
in (a) varies only slightly with frequency, in contrast to the
measured skin depth for gold, which reaches ∼45 nm due to
interband transitions.

Localized SPP resonances disappear when the resonator
length exceeds the SPP propagation length [84]. The
propagation length of a surface plasmon is given by [81]

Lspp = c
ω

�
��

1 + �2

��
1�2

�3/2
��2

1
���

1
. (16)

4.3. Optical antenna as a cavity resonator

The connection between the modes of conventional RF and
optical antennas has been investigated using a Fabry–Pérot
or similar cavity model, with SPP reflection at the ends
defined by a length-dependent reflection coefficient [85–87].
As expected, current resonances were found to occur
when the length of the antenna was equivalent to an
integer multiple of half the intra-cavity wavelength. Optical
antenna resonances are distinguished from classical antenna
resonances by applying a modified wavevector for the cavity
compared to that for free space, related to the different
material properties (i.e., frequency-dependent permittivity)
and the typically lower aspect ratio of the antenna at
optical frequencies. A greater ratio of the cavity wavevector
to the free-space wavevector is associated with greater
binding of the wave to the surface (i.e. a plasmonic wave),
correspondingly lower radiated power, decreased resonant
length, and the introduction of subradiant and superradiant
modes as the antenna resonant length decreases below half
the free-space wavelength. Thus the ideal classical antenna
can be considered equivalent to a plasmonic antenna, but with
a reflection coefficient of r = 1 and with a cavity wavevector
equal to the free-space wavevector [87]. Plasmonic antennas
are characterized by SPP dispersion, which exhibits a greater
wavevector on the structure surface compared to free space.

Figure 9. Evanescent electric field penetration into (a) a
free-electron (Drude) metal and air supporting a surface plasmon
polariton for λ = 500, 750, and 1000 nm. Longer wavelengths are
associated with greater penetration into the air, while shorter
wavelengths are bound more strongly to the interface. The field
penetration into the air is much greater than the skin depth δ of the
metal shown in (b) as a function of energy for gold using measured
data from [80].

4.4. Effective wavelength scaling

RF theory predicts a fundamental dipolar resonance on a
wire antenna for lengths near integer multiples of half the
wavelength as discussed above [6]. However, at optical
frequencies, the increased wavevector compared to that of
free space is associated with an increased SPP effective mode
index neff [86]. The result is a reduction of the resonant
length compared to that expected from RF theory for a
given excitation wavelength. According to finite element
models, the resonant lengths for plasmonic rods occur near
integer multiples of half of the SPP wavelength (or effective
wavelength) instead of the free-space wavelength [86]. The
relationship between the free-space wavelength λ0 and the
antenna length L required to achieve resonance of order m is
given as

mλeff

2
= L(λ0) + 2ψ(λ0) (17)
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Figure 10. Infrared transmission spectra (a) and effective wavelength scaling (b) for gold linear optical antennas. The resonant antenna
lengths are linearly related to the free-space wavelength. The numbers given for each minimum in (a) correspond to antenna length and the
number of antennas included in each measurement. In (b) data are compared to the theoretical model of [88] with a single fit parameter
neff = 2.03 with antenna diameter D = 68 nm. Adapted with permission from [94]. Copyright 2008 American Institute of Physics.

where λeff = λ0/neff is the effective wavelength and ψ(λ0) is
an added length accounting for a phase shift upon reflection
at the cavity terminals [18, 87]. The additional length is
comparable to the 1/e decay length in the wave transverse
direction (as given by equation (15)). If L � ψ , equation (17)
can be approximated to give λeff = 2L for the fundamental
m = 1 dipolar mode.

With the effective SPP mode index also dependent on
the wire geometry, theoretical models have been developed
directly linking the antenna geometry to the resonance
wavelength [88, 89]. Models based on the extinction cross
section as calculated using electrodynamics simulations based
on the discrete dipole approximation verified the linear
resonant length scaling and identified differences based
on the type of metal used, especially for higher order
resonances [90]. Investigations of the radius dependence of
a plasmonic rod antenna show that decreasing the radius
increases the effective mode index [91]. Hence, according
to equation (17), decreasing the radius would require
lengthening of the antenna to retain resonance for a given
wavelength.

The linear scaling relationship of the resonant length
with the effective wavelength has been verified experimentally
using far-field spectroscopic measurements in the visible [92]
and infrared [93–95]. Decreased resonant length compared
to λ0/2 has been measured using nonlinear optics [96],
thermal absorbers in the infrared [34], and near-field
techniques [97–99]. Figure 10 shows the transmission spectra
in the mid-infrared for gold linear wire antennas with lengths
in the range L = 0.5–2.5 µm and width and height w ≈
h ≈ 60 nm [94]. The rods were fabricated by electron beam
lithography on a ZnSe substrate. The effective wavelength
scaling is observed by selecting the wavelength of minimum
transmission for each antenna length as shown in (b). The
data were fitted to the effective wavelength model in [88]
with good agreement with a single adjustable parameter
neff. Resonant length scaling depends in general on the
geometrical details of the antenna (diameter, cross section,
surface roughness, etc.) and the material properties of the

surrounding medium. Typical values for neff have been
measured in the range of 1.5–3.0 [34, 93, 94, 96–99].

5. Impedance of optical antennas

Next we turn to the specific theoretical description of
impedance of optical antennas. Impedance is one of the
most important antenna parameters in the RF. It plays an
equally important role in the description of the antenna–load
interaction at optical frequencies, as it governs the coupling
between the antenna and mode transformer or the load of the
RTC system. Depending on the geometry of the antenna–load
system, the impedance can be modelled in two different ways.

The first method is analogous to the input impedance
analysis of centre-fed RF antennas, with input impedance
described at an antenna ‘feed gap’. This method is useful for
multi-element antennas with defined gaps (though the antenna
may not actually be fed at the gap). The corresponding
theoretical approach [72, 100–105] has been used to help
understand experimental results [99, 106] in terms of
impedance and field enhancement. This method will be
discussed in greater detail in this section.

The second approach can be used for antenna configu-
rations that do not have a well defined gap. Antenna–load
interactions in this case can be assigned through the
modification of the local density of states by the antenna [61].
Impedance can be defined to describe this interaction and
provide a means for impedance matching. These types of
antenna configuration will be discussed in further detail in
section 6.7.

5.1. Gap excitation

Impedance analysis of gap excited and gap loaded optical
antennas is similar to that of conventional RF antennas. The
input impedance is defined at the antenna gap terminals as
the ratio of the driving voltage to the displacement current
through the gap [100]. The intrinsic antenna (self-) impedance
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(a) (b) (c)

Figure 11. Circuit diagrams for optical antennas loaded with single (a), in-series (b), or in-parallel (c) nanoloads. The input impedance
defined at the gap terminals is the parallel combination of the nanoload and the antenna intrinsic impedance ZA. Adapted with permission
from [105]. Copyright 2011 Optical Society of America.

is ZA = R−iX, where R is the resistance and X is the reactance
of the antenna.

A load positioned in the gap can be defined as a
capacitor in parallel with the antenna intrinsic impedance. The
impedance of the load is given by

ZL = ig
ω�LA

(18)

where g is the length of the gap, A = wd is the cross
sectional area of the gap, and �L is the dielectric function
of the load material [105]. Complex loads made of two
or more materials can be modelled by assigning the load
dimensions as appropriate fractions of the gap dimensions.
Circuit representations for single loads, series loads, and
parallel loads are shown in figures 11(a)–(c), respectively. For
stacked loads (see figure 11(b)) one should replace g with the
load thickness ζ or g − ζ in equation (18). For side-by-side
loads (see figure 11(c)), one should replace width w with ξ or
w − ξ .

The intrinsic input impedance can be determined by
inserting a load with �L = �s where �s is the dielectric function
of the surrounding medium. In this case, the impedance is
given by

Zin = 1
1

R−iX − iωC
, (19)

where C = �sA/g. The real and imaginary parts of Zin are

r0 = R
1 − 2CXω + C2R2ω + C2X2ω

, and (20)

x0 = X − CR2ω − CX2ω

1 − 2CXω + C2R2ω + C2X2ω
. (21)

When loaded, the capacitance becomes CL = �LA/g. The
input impedance with the load is determined by replacing C
with CL in equations (20) and (21). This model also produces
an estimate of the frequency of the first open-circuit resonance
corresponding to resonant scattering, given by [105]

ω0 = gX
A(R2 + X2)�L

. (22)

Using this model, the input impedance of a dimer optical
nanoantenna can be compared to the input impedance as

calculated using RF theory. For an antenna of length L =
110 nm, radius a = 5 nm, and gap size g = 3 nm, the
fundamental dipolar resonance (Xin = 0 �) occurs at f =
266 THz (λ = 1.13 µm) with Zin of 22 �. In comparison,
the radiation resistance of this geometry has also been
calculated from the current density j = −iω�0[�(ω) − 1]E
and total emitted power with the local electric field calculated
numerically using the semi-analytical multiple-multipole
(MMP) method [88]. For both gold and aluminum half-wave
antennas with length L = 110 nm and radius a = 5 nm, the
radiation resistance determined in this manner is Rr ≈ 3 �,
suggesting that the Ohmic loss resistance for this geometry is
R� ≈ 19 �. This is significantly less than the classical thin
wire antenna Zin of 68.5 � as calculated using the induced
EMF method [6]. In comparison, a centre-fed single-walled
nanotube antenna was found to have an extremely low
radiation resistance of about 0.04 �, and a comparatively high
input resistance of about 100 k� due to significant absorptive
loss [107].

5.2. Resonance tuning by loading

A load placed in the gap between two linear antenna segments
has been shown to modify the resonance of the antenna–load
system, both theoretically [100] and experimentally [108].
Inserting loads of higher permittivity results in increased
gap capacitance and lower resonance frequencies for the
antenna–load system. As an example, simulations of spherical
silver nanoparticle dimers of total length L = 100 nm,
separated by a gap of g = 3 nm, driven from a source
with impedance 10 k�, and loaded at the gap by either
vacuum (� = �0), Si3N4 (� = 4.1�0) or Si (� = 13.37�0)
result in second order (open circuit) resonances of 665 THz,
605 THz, and 455 THz (450 nm, 500 nm, and 660 nm),
respectively [72]. A very small gap width can be created
in practice by, for example, using few-layer molecular
spacer layers between template-grown nanorods [109] or
implementing a slightly modified stacked antenna geometry,
lithographically defining the metal elements with an overlap
near the centre where dielectric material of only a few
nanometres can be deposited between the metal layers [110].
However, when implementing these nanodisc materials with a
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Figure 12. Standing waves (a) develop on a transmission line when the load presents an impedance different from the characteristic
impedance of the line, resulting in reflection with reflection coefficient � related to the impedance mismatch. The two limiting values for the
load are a short-circuit load ZL = 0 � (b) and an open load ZL = ∞ � (c). The electric field magnitude at x = 0 is either a null (for the short
circuit) or a maximum (for the open). (d) The topography and sample normal electric field Ez as measured by s-SNOM for the short load (e)
and open load (f). Reprinted with permission from [43]. Copyright 2010 Optical Society of America.

geometric scale of only a few nanometres, one has to consider
that quantum finite-size effects become significant and
fundamentally change the optical and electronic properties
compared to those of the bulk material.

Instead of changing the material of the nanoload disc,
varying its radius also affects the impedance and thus the
resonance. Decreasing the radius of the nanoload increases its
impedance according to equation (19). This has been verified
experimentally using near-field measurements to characterize
the amplitude and phase of a cylindrical dimer antenna with a
connecting metal bridge [99]. For a full bridge radius equal to
the antenna arm radius, a fundamental dipolar resonance was
observed associated with the entire length of the connected
dimer. As the radius of the bridge was reduced to a = 0, the
resonance behaviour gradually shifted to that of two separate
dipoles.

Immersing antenna dimers in an anisotropic liquid crystal
dielectric load medium provides a way to control the electrical
interaction between the two elements [103, 108]. Using
electrodes near the antennas to control the orientation of
the liquid crystal, one can tune the resonance frequency
and polarization response of the dimers. Loading antennas
with nonlinear materials has been suggested as a way to
achieve optical memories, switches, and transistors using
nanoantennas [104]. Active control of the antenna resonances
might be achieved by using semiconductor loads which allow
for optical control of the free-carrier density via optical
pumping [111].

5.3. Measuring impedance matching with coplanar striplines

Theoretical investigations of the impedance of nanoloads
are helpful in estimating the required antenna properties

for impedance matching. However, in order to design a
fully integrated circuit consisting of antennas, loads, and
transmission lines, one must be able to experimentally
quantify the impedance of the load.

The degree of impedance matching, e.g., between two
separate circuit elements connected by a coplanar two-wire
transmission line, can be inferred from the standing wave
pattern on the line [40]. A coplanar strip line consists of
two parallel metal stripes on a substrate that together support
voltage V and current I wave propagation with travelling wave
solutions along x of [8]

V(x) = V0
�
e−γ x + �eγ x� , and (23)

I(x) = V0

Z0
(e−γ x − �eγ x), (24)

with the characteristic impedance of the line Z0 related
to the distributed load per unit length, and the complex
propagation constant γ = α + iβ where β = 2π/λg and λg
is the wavelength of the standing wave on the line. � is the
reflection coefficient of the wave at the junction between the
transmission line and the load. It is related to Z0 and the
terminating load impedance ZL (see figure 12) as

� = ZL − Z0

ZL + Z0
= �0eiθ . (25)

If the load is matched to the line, Z0 = ZL, and � =
0 (i.e., there is no reflection). The limiting cases for the
terminating load impedance are the short circuit (ZL = 0 �)
and the open circuit (ZL = ∞ �), resulting in reflections
with � = −1 and � = 1, respectively. Figures 12(a)–(c)
show a conceptual view of standing wave generation on the
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transmission line with wave reflection at the junction between
the transmission line and the load. For a short-circuit load (b),
the reflection coefficient is real � = −1 and the wave has an
amplitude of |E| = 0 V m−1 at the location of the load. In
contrast, the open load (the two striplines are disconnected)
supports the maximum electric field magnitude, and the null
occurs at a distance λg/4 from the load.

As a verification of this theory at optical frequencies,
scattering-type scanning near-field optical microscopy (s-
SNOM) was used to measure the standing wave patterns
on antenna-coupled coplanar striplines loaded by either a
short or an open connection, finding good agreement with
transmission line theory [43]. Figures 12(d)–(f) show the
topography (d), and sample normal electric field Ez as
measured by s-SNOM for the short load (e) and open load
(f).

The impedance of an arbitrary load with respect to Z0
of a low-loss transmission line can in principle be quantified
through the reflection coefficient [8]. The magnitude of the
reflection coefficient can be calculated as

|�| = S − 1
S + 1

(26)

where S = Vmax/Vmin is the standing wave ratio, defined
as the ratio of maximum to minimum voltage on the
transmission line. At optical frequencies, the magnitude of
the experimentally measured electric near-field can be used
instead [40, 43]. The phase of the reflection coefficient is
found by locating the first null in the voltage standing wave,
at position x�, with

x� = θλ

4π
. (27)

A similar way to create optical interconnects for wireless
optical broadcasting has been proposed [112]. This includes
a circuit consisting of two waveguide-coupled antennas, one
serving as a transmitter and the other as a receiver in the
far-field. The antennas are impedance matched to the stripline
by placing a load in the gap between the antenna elements.
Even with radiation losses, the overall signal loss of the
antenna transmission system is predicted to be significantly
less than the loss if the air link were replaced by a continuation
of the plasmonic waveguide.

Impedance matching was implemented experimentally
with a single-wire plasmonic transmission line coupled to a
bowtie antenna as a load [113]. Using numerical simulation,
the antenna dimensions associated with the reflection
coefficient minimum at the load (i.e., best impedance match)
were found to be equivalent to those for the isolated antenna
as determined via a parametric experimental study. Impedance
matching in this configuration was checked using numerical
techniques to calculate the complex characteristic impedance
of the wire as Z0 = 138 + i3.2 � for free-space wavelength
λ0 = 672 nm. This value is in good comparison with Z0 =
216 + i5.5 � as found by a different simulation for a coplanar
strip transmission line [40].

These efforts provide the first steps towards antenna
integrated optical circuitry. Future experimental and theo-
retical work should focus on verifying the accuracy of the

Figure 13. Classical and quantum emitters. (a) Classical radiating
dipole modelled as an electron on a spring connected to a immobile
atom core. The electron’s oscillatory motion decays with time
constant τ = �0. (b) A quantum emitter decays from energy |b� to
|a� with rate �sp, emitting a photon with energy E = h̄ω0.

theory of the optical interconnect, investigating different
types of transmission line, and systematic measurements
of the impedances of different types of load including
photodetectors [31], metal–oxide–metal (MOM) diodes [33,
114], and quantum loads, for example.

6. Optical antennas for emission

We now turn the discussion specifically towards antennas
operating in the optical regime. In particular, we discuss the
emission properties of optical antennas and antenna–emitter
systems including classical and quantum emitters, radiative
and nonradiative decay rates, and antenna–emitter interac-
tions.

6.1. Emission of radiation from a classical dipole

The oscillating electric dipole could be considered as the
most fundamental antenna. Consider the simple model of an
electron with position r(t) oscillating about an equilibrium
position, bound to a stationary atom core as shown in
figure 13(a). The periodic motion at small amplitudes
experienced by the electron upon EM excitation can be
modelled as a damped harmonic oscillator. Following [73]
and [115], the equation of motion for the undriven radiating
oscillator can be written as

m
d2

r

dt2
+ ω2

0mr = Fr, (28)

where Fr is a reaction force experienced by the electron,
corresponding to the loss of mechanical energy due to
radiation of electromagnetic energy. In this model, this term
accounts for all energy lost via radiation. Fr is given by the
Abraham–Lorentz formula

Fr = q2

6π�0c3
d3

r

dt3
. (29)

Taking the solution for the charge motion to be of the form
r(t) = r0 exp{−iω0t}, equation (29) can be rewritten using
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d3
r/dt3 = −ω2

0 ·dr/dt. The equation of motion then takes the
form

d2
r

dt2
+ �0

dr

dt
+ ω2

0r = 0, with (30)

�0 = q2ω2
0

6π�0mc3 (31)

where �0 is the rate of radiative damping of the electron
motion. The relaxation lifetime of the oscillation (i.e., the
time when the oscillation amplitude is a factor of 1/e smaller
than the initial amplitude) is τ = 1/�0 with a typical value of
≈20 ns at optical frequencies (here, e.g., h̄ω0 = 2 eV).

Now let us consider the system driven by an external
electric field polarized in the direction of the dipole E(t) =
Re{E0 ẑ exp−iωt}. The solution for the equation of forced
motion is

r(ω) = −eE0ẑ
m

1

ω2
0 − ω2 − i�0ω

(32)

where e is the fundamental charge. r(ω) is a Lorentzian
oscillator with resonance when ω = ω0.

6.2. The atom as an antenna

Atomic radiation in the visible spectrum is well understood.
The bright yellow light of a sodium vapour lamp is due
to the 3p → 3s atomic transition with doublet transition
wavelengths of λ = c/E = 589.0 and 589.6 nm [116]. Since it
is responsible for the radiation of electromagnetic waves, can
the atom then be considered an optical antenna?

Let us consider a nondegenerate two-level quantum
system with ground and excited states |a� and |b� (see
figure 13(b)), and transition dipole moment operator µ̂. This
system decays from the excited state spontaneously with
rate [73, 115]

�sp = πω0

3�0h̄
|�a|µ̂|b�|2ρµ(r0, ω0), (33)

where �0 is the vacuum permittivity, h = h̄/(2π) is Planck’s
constant, Eb − Ea = h̄ω0 is the energy of the transition, and
ρµ is the partial local density of states (LDOS) at the location
r0 of the system. In vacuum, the electromagnetic density of
states ρµ = ρv is given by

ρv(ω) = ω2
0

π2c3 . (34)

Inserting equation (34) into (33), and introducing µ2
ba

=
|�a|µ̂|b�|2, the spontaneous emission rate becomes

�sp = ω3
0

3π�0h̄c3 µ2
ba

. (35)

We can now compare the radiative rates of the classical
system and the quantum system. Taking the ratio of the
quantum rate to the classical rate, we find that it is equivalent
to the oscillator strength of the transition between two
quantum levels, a dimensionless quantity given by [115]

fab = �sp

�0
= 2mω0µ

2
ba

h̄
. (36)

For a one-electron atom, the oscillator strength for the
transition between the ground state and the first excited state
is ∼1. Thus in the weak perturbation regime the classical
description can be applied to describe the radiation of a
quantum system to a good approximation. In fact, the radiative
rate of the classical dipole emitter serves as an upper limit
for the atomic rate of spontaneous emission [115]. With
the classical dipole serving as an elementary antenna, the
good agreement between the classical and quantum dipole
models suggests that we can draw a close analogy between
the radiative emission and absorption of a quantum system
and classical antennas. This notion will be expanded on below
in the formulation of the impedance of an atom [61].

Using equation (35) one can estimate the decay time
of a nondegenerate two-level atom. Taking µba = q2r2

21 as
(one-electron charge) × (1 Å) (or 1.602 × 10−29 C m), and
ω0 = 2 eV/h̄eV = 3.04×1015 rad s−1, the spontaneous decay
rate is calculated using equation (35) as �sp = 3.03×107 s−1.
The corresponding excited state lifetime is τ = 1/�sp =
33 ns. In comparison, the measured lifetime of the transition
from the 4s4p 1P1 configuration of calcium to the lower
energy 4s2 1S0 configuration (ω0 = 4.5 × 1015 rad s−1) is
4.5 ns with µba = 2.4 × 10−29 C m [117]. In general, typical
radiative lifetimes of atomic transitions are of the order of a
few nanoseconds [74, 118].

With λ0 = 2πc/ω0, the decay rate takes on the alternative
form

�sp = 8e2π2

3�0h̄

�
r
λ0

�2 1
λ0

. (37)

This form highlights the size mismatch r/λ0 inherent in the
atom–field interaction. This size mismatch and the related
long radiative lifetime of the excited state are indicative
of the large impedance mismatch that the atom faces
with free space. Comparing to the RF antenna discussion
above, the atom has a low Prad, but it cannot lose energy
nonradiatively since R� = 0 �. Either increasing the size
of the system or decreasing the wavelength would increase
the coupling to free space. However, these parameters are
typically constrained. An alternative way to increase the
coupling would be by increasing the energy density or local
density of electromagnetic states as indicated by (33). This
is where optical antennas come into play. Before discussing
antenna–emitter interactions, however, we first discuss the
radiative rate of the antenna itself.

6.3. Metallic resonators: radiative dephasing

One of the roles of an optical antenna is to control or enhance
the radiative emission of a quantum emitter. For this to occur,
the antenna must radiate efficiently, and with a faster rate than
the quantum emitter. On the other hand, an antenna designed
to feed energy into a load would benefit from a low total
decay rate, making the energy available to the load via the
near-field for a longer duration. In both cases it is important
to understand the decay rate of optical antennas.

We first consider a metal sphere of radius a � λ in the
quasistatic approximation with dielectric function � = ��+i���
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Figure 14. Energy damping in plasmonic particles. (a) Diagram showing the decay pathways for a particle plasmon: radiative decay
resulting in a photon, and nonradiative decay via inter- or intraband excitation resulting in an electron–hole pair. (b) Measured linewidths of
plasmon resonances for nanorods (circles) of different aspect ratios and nanospheres (open triangles) versus resonance energy. The
corresponding T2 dephasing times are shown on the right-hand scale. The grey lines correspond to Mie theory (spheres) and a quasistatic
calculation (rods). Adapted with permission from [54]. Copyright 2002 by the American Physical Society.

embedded in a medium with �m. The induced dipole moment
of the sphere is related to the incident electric field E0 as [4]

p = �0�mαE0, (38)

where the polarizability of the particle is given by

α(ω) = 4πa3 �(ω) − �m(ω)

�(ω) + 2�m(ω)
. (39)

The Fröhlich resonance condition �� = −2�m for the sphere
is associated with a confined collective charge density
oscillation termed a local surface plasmon polariton. This
resonant behaviour is distinct from the conventional antenna
resonance discussed above for several reasons. First, it is
sensitive to the precise behaviour of �(ω). Notably, this
can have great implications in field enhanced spectroscopy,
for example, where the Raman scattering enhancement near
such a particle scales with (� − �m)/(� + 2�m) to the
fourth power [119]. Also, with the cycle period less than
the average Drude electron scattering time 1/γ as discussed
above, coherent and superradiant behaviour arises, which may
partially overcome limitations in radiative efficiency brought
on by higher Ohmic loss at optical frequencies.

This quasistatic model, however, does not account for
radiative energy losses that become significant with larger
particle sizes. Generally, both radiative and nonradiative
decay channels should be considered, as they define the
efficiency of the transformation function of the RTC scheme.
The total damping rate of an excited particle plasmon is given
by

� = �r + �nr, (40)

where �r is the radiative decay rate and �nr is the nonradiative
rate. This is analogous to the RF antenna where the antenna
resistance RA has radiative Rr and nonradiative Ohmic R�

contributions. As shown in figure 14(a) for a particle plasmon,
radiative relaxation results in the emission of a photon, while
nonradiative relaxation results in either an intra- or interband

excitation [54]. If nonradiative decay in the antenna dominates
the total damping, then the antenna will be a weak emitter.

Compared to the atomic oscillators described in sec-
tion 6.2 above, the much larger metallic particles have been
found to exhibit significantly shorter radiative lifetimes. The
scattering spectra of individual gold plasmonic nanoparticles
of different sizes and shapes were systematically mea-
sured [54]. With � equal to the homogeneous linewidth
of the scattering spectrum of an individual particle, the
total dephasing time was determined using T2 = 2h̄/�.
Figure 14(b) shows the measured linewidths � of plasmon
resonances for nanospheres (open triangles) and nanorods of
different aspect ratios (circles) versus resonance energy. The
corresponding total (radiative and nonradiative) T2 dephasing
times are shown on the scale on the right. The experimental
measurements agree with Mie theory (for the spheres) and a
quasistatic calculation (for the nanorods) as shown by the grey
lines.

The dephasing time T2 is composed of radiative Tr and
nonradiative Tnr components as

1
T2

= 1
Tr

+ 1
Tnr

. (41)

The T2 time for a nanorod with a 3:1 aspect ratio was
measured to be T2 = 16 fs. From this value dephasing times
of Tr = 160 fs and Tnr = 18 fs were estimated, indicating that
the population decay time for these geometries is dominated
by nonradiative Drude relaxation. Meanwhile, a sphere with
the same resonance energy decays with T2 ≈ 1.4 fs according
to the measurement (see figure 14(b)). The faster dephasing
rate is attributed to the ∼80 times greater volume of the sphere
compared to the rod [120]. Under the assumption Tnr,sphere =
Tnr,rod at the same resonance energy (here Eres = 1.7 eV), we
calculate the radiative rate of the sphere to be 1.5 fs. This
short radiative lifetime would have significant implications
in the discussion of optical antenna behaviour. According to
this analysis, the rod shaped plasmonic antenna should be
used to feed a load due to the lower overall dephasing rate,

16



Nanotechnology 23 (2012) 444001 Topical Review

and the sphere should be used to enhance radiative emission
from a quantum source due to its high radiative decay rate.
Other measurements reiterate this assumption of fast radiative
decay [121]. Experimental efforts should be focused on direct
radiative decay measurements to verify these assumptions.

It should be noted that the assignment of decay rates
based on spectral amplitude measurements can be misleading
as it relies on general assumptions of geometric and material
homogeneity and lacks spectral phase information. Spectral
line broadening can occur due to geometric variation within
a measured inhomogeneous ensemble, local scattering points
or roughness on individual particles, or absorption due to
surface contamination, for example resulting in a shorter
apparent relaxation time [55]. Additional information can be
useful and should be collected when possible. For example,
deviations in spectral phase behaviour from that expected for
a harmonic oscillator could directly indicate the effects of
intrinsic structural inhomogeneities on the underlying electron
ensemble [122].

6.4. Inconsistencies in plasmon radiative decay rate

Using a cavity model for resonances in gold plasmonic
nanorods, the quantum efficiency η = �r/(�r + �nr) was
calculated to vary over a wide range from about 0.05 to
0.8 depending on the effective plasmon wavelength which
is related to the antenna geometry as shown in figure 15
for nanorods of radii R = 20, 10, and 5 nm for the cavity
model (lines) and 3D numerical simulation (circles) [87]. The
wavevector compression K = k�/k0 = λ0/λeff is related to the
radius. The horizontal axis indicates the jth resonant mode for
a given antenna length. In the quasistatic limit, appropriate
for analysis of antennas with K � 1, the radiation resistance
Rrad responsible for power lost through radiation is related to
the radius R as Rrad ∝ R2. This trend agrees with the analysis
discussed above for spheres where a greater �r was associated
with a greater particle volume. This suggests that if �nr due to
absorption does not increase significantly with radius, thicker
antennas should have a greater quantum efficiency.

Nevertheless, there is some disagreement about the
relative rates of the radiative and nonradiative decay channels
in plasmonic nanorods. According to the analysis of [87],
thicker rods exhibit greater η and lower wave surface binding
(lower K) as seen in figure 15. For an antenna with radius R =
20 nm, the quantum efficiency is η = 0.8. This contradicts
the measured scattering spectrum of [54], which shows that
for a R = 20 nm antenna with length L = 60 nm (3:1 aspect
ratio), the decay should be dominated by the nonradiative
component, with the radiative efficiency being only 10%
(see figure 14). Yet measurements of scattered radiation from
arrays of L = 400–525 nm gold nanorods resulted in an
estimated 82% radiative efficiency [123].

There are notable inconsistencies in theory as well.
A semi-analytical model based on Pocklington’s integral
equation on a R = 5 nm antenna indicates that 28% of the
power delivered is lost via a radiative channel and 72% is
absorbed [102], in good agreement with the finite element
method solution of Maxwell’s equations evaluated in the

Figure 15. Calculated plasmonic nanorod quantum efficiency
η = �r/(�r + �nr) as a function of length L (jth resonant mode)
based on an analytical cavity model. Thicker rods (radius R) exhibit
greater η and lower surface wave binding (lower K). Circles show
results from numerical calculations. Reprinted with permission
from [87]. Copyright 2011 American Chemical Society.

same work. On the other hand, a simple oscillator model
can be applied to electrons in a plasmonic rod, accounting
for radiation through the Abraham–Lorentz radiation reaction
force. This model suggests that for a rod with average R =
90 nm, the power associated with scattering or radiation is
three times greater than the power associated with absorption
near λ0 = 7 µm [64]. This model agrees well with a
finite-difference time domain (FDTD) simulation conducted
in the same work.

The relative contributions of radiative versus nonradiative
relaxation channels dominating plasmon decay thus seem to
remain unclear. More investigation in this direction is needed
also in order to better understand how antennas can enhance
the radiative decay pathways of nanoloads. In particular, it
is important to determine the relationship between antenna
geometry, frequency of operation, and radiative relaxation
rate.

6.5. Relaxation dynamics in RF antennas

Relaxation rate presents a major inconsistency between RF
and optical antenna behaviour. At frequencies far below the
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Drude scattering rate (ω � γ ), nonradiative decay channels
due to Drude scattering become increasingly irrelevant in part
due to the loosely bound nature of the RF surface wave, where
a greater portion of the energy is outside the metal compared
to the localized SPP case. The oscillation decay is therefore
dominated by radiation. In contrast to the femtosecond
timescale decay of optical antenna resonances, RF antennas
exhibit decay times on the order of nanoseconds, as extracted
from the linewidth of the radiative resistance [7, 10, 70, 124].
Since radiative resistance is wavelength dependent at these
length scales (i.e., it is analysed in a wavelength-normalized
reference frame) according to equation (5), the decay rate
scales with the frequency of oscillation. Lower resonant
frequencies thus correspond to lower radiative rates. For
example, the quality factor, Q = fmax/�f (where fmax is the
resonant frequency), of a thin cylindrical antenna at its first
open-circuit resonance is approximated from experimental
data as Q ≈ 3.5 [70]. The resulting relaxation time of an
L = 1 m antenna is τ = τrad = 1/2π�f = 1.8 ns. This is
comparable to the decay time found in time domain studies
of linear antennas excited by short pulses [124]. The radiative
relaxation time of RF antennas is several orders of magnitude
greater than that of plasmonic antennas, highlighting the
different energy scales and physical mechanisms at work in
the different frequency regimes.

6.6. Enhancing atomic and molecular emission with
antennas

Following the transformation associated field localization and
enhancement, here we discuss various aspects related to the
near-field coupling and energy transfer between an antenna
and a quantum load in the RTC scheme. The spontaneous
decay rate �sp of, e.g., a quantum emitter such as an atom,
molecule, or quantum dot, depends on the LDOS as described
by equation (33). This is commonly known as Fermi’s golden
rule. The partial local density of states is given by [73]

ρµ(r0, ω0) = 6ω0

πc2 [nµ · Im{
↔
G (r0, r0, ω0)} · nµ] (42)

where nµ is the unit vector denoting the direction of the

dipole moment µ21. The Green’s function
↔
G depends on

the environment. It defines the relationship between a dipole
moment µ at location r

� and its associated electric field at a
different location r as [61]

E(r) =
↔
G (r, r

�) ·µ(r�). (43)

Thus if the environment is changed (e.g., by a nearby
antenna), the Green’s function will change, and the decay rate
of the quantum system can be modified. This can be achieved
by placing the particle in a location with a high LDOS such as
inside a Purcell cavity or near a plasmonic antenna in a region
of high field enhancement.

The LDOS modification is not the only effect an antenna
can have on the emission of a quantum system. In particular,
coupling between a quantum emitter and an antenna can
lead to four outcomes: (i) enhancement of the radiative rate
of the emitter due to an increase in the LDOS through,

e.g., field enhancement near the antenna or constructive field
interference; (ii) quenching of the radiative rate of the emitter
due to a decrease in the LDOS through, e.g., destructive field
interference; (iii) enhancement of the radiative rate due to
the emitter coupling to fast radiant decay channels in the
antenna; and (iv) quenching of the radiative rate due to the
emitter coupling to fast nonradiant decay channels in the
antenna [125].

Outcomes (i) and (ii) were observed experimentally via
the change of radiative lifetime of the fluorescence decay of
an emitter at various distances from a mirror [126, 127], or
using the enhanced field near a gold nanoparticle to influence
the radiative lifetime of a molecule [128] or quantum dot [45].
By scanning a gold nanoparticle in shear-force feedback over
a 10−9 molar concentration of terrylene molecules, a 22-fold
increase in excited state decay rate was observed [57]. In
another experiment, the radiative lifetime of an otherwise
inefficient single molecule quantum emitter was shown to
decrease by a factor of >28 in the high energy density region
between the elements of a coupled dimer bowtie nanoantenna,
compared to the case without the antenna [60].

For molecular excitations with a low intrinsic radiative
quantum yield, e.g., vibrational resonances in polyatomic
molecules, direct mode transfer into an antenna system may
result in competition between the intra- and intermolecular
vibrational decoherence on one hand, and energy loss via the
antenna’s radiative channel on the other hand. If the antenna’s
radiative channel dominates, this is outcome (iii) [130]. Yet at
small separation distances between the emitter and antenna,
the radiative emission has been found to decrease significantly
in some cases, particularly when the intrinsic quantum yield
of the isolated particle is high. This quenching has been
attributed to an increase in emitter coupling to dipolar and
higher order modes in the antenna, providing new decay
channels to the emitter. If the nonradiative channels dominate,
quenching via outcome (iv) occurs [128, 129].

6.7. Quantum emitter impedance

In the context of the antenna–load coupling, the use of the
LDOS as defined by the Green’s function has been proposed
as a way to describe antenna–load interactions in terms
of impedance, linking traditional RF antenna terminology
with that of quantum emitters [61]. This scheme is briefly
summarized here. The time averaged power emitted by a
radiating dipole p(t) ∝ exp(−iωt) is

P0 =
�
−dp

dt
· E

�
= 1

2
Re(iωp · E

∗). (44)

This equation is similar in form to the power dissipated by a
load in a circuit,

P = 1
2 Re(IU∗), (45)

where U is the voltage across the load and I is the current
through it. Using the similarity between equations (44) and
(45), a link between E and U, and I and p is established.
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Figure 16. Coupling between a nanoantenna and an absorbing load
(a) or emitter (b). Specific values for the circuit components depend
on geometrical details and material parameters of their respective
elements. Reprinted with permission from [61]. Copyright 2010 by
the American Physical Society.

Then, inserting equation (43) into (44) the power emitted by
the dipole is recast as

P0 = 1
2

Im

↔
G

ω
(ω2|p|2). (46)

An alternative form of equation (45) is

P = 1
2 Re(ZL)|I|2. (47)

The similarity between these forms of P and P0 links
↔
G to ZL.

The full set of transformations relates the optical p,
↔
G, and E

to the electrical I, Z, and U as

I ↔ −iωp(r) (48)

Z ↔ −i

↔
G (r0, r0, ω)

ω
(49)

U ↔ −Ez(r0). (50)

Note that in this formulation, I and U represent the current
and voltage per unit length, and Z is impedance per unit area.

Since Re(Z) represents Im(
↔
G), the latter represents radiative

and Ohmic losses in the quantum emitter–antenna. This can be

understood since Im(
↔
G) is also proportional to the decay rate

of the excited quantum emitter (see equations (33) and (42)).
That is, a higher radiation resistance is related to a higher
radiative decay rate.

The formulation above applies to the calculation of the
radiated power emitted by a dipole into the field. The internal
specific impedance of the quantum emitter itself is related to
its polarizability as [61]

Zin = i
ωα�0

. (51)

Similarly, the specific impedance of a Purcell cavity [66] or an
antenna can be determined from the known Green’s function
or polarizability, respectively.

Using these impedance transformations for the quantum
system, the cavity, and the antenna, coupling between a cavity
or antenna and a quantum emitter or absorber can be described
in circuit diagram form. Figure 16 shows the equivalent circuit
for an absorber (a) and emitter (b) coupled to a cavity or
antenna. The emitter or absorber internal specific impedance
is indicated as Zin, the vacuum resistance is R0, and the

nanoantenna or cavity impedance is the parallel combination
of L, C, RR, and RNR, parameters dependent on geometric and
material details of the antenna or cavity. Uext represents the
specific voltage introduced by an incident external field.

Notably, when the circuit corresponding to the antenna
or cavity impedance is resonant, the impedance is purely real,
and the ratio between the cavity or antenna resistance and the
resistance of vacuum gives the Purcell factor, reflecting the
increase or decrease in the density of states [61, 62]. There are
general questions, however, on whether the Purcell factor can
be applied accurately for plasmonic antennas. The absence
of a defined set of normal modes for absorbing media, and
nonresonant coupling of emission to higher order multipole
moments not contained in a Purcell factor calculation, were
reported to result in an underestimate of rate enhancement in
plasmonic structures by up to an order of magnitude compared
to a rigorous calculation based on the Green’s function [62],
and a deviation from the Purcell definition of effective mode
volume has been calculated for larger particles [131]. The
clarification of these and related questions could be the subject
of future investigations.

7. Optical antennas as receivers

In section 6.7 we discussed the fundamental parameters
relevant for antenna–nanoemitter coupling expressed in terms
of impedance matching and emission rate enhancement. In
that context, one of the core related functions of antenna
systems is to receive EM radiation and provide the power at
the position of the nanoload, which we shall discuss in this
section.

Focusing optical energy below the diffraction limit has
been achieved in several ways. Perhaps the simplest way
is by exploiting the high electric field gradient associated
with sharp geometric features on rough surfaces or on
optically resonant nanostructures. Intensity enhancements of
up to three orders of magnitude have been predicted in
the gap between coupled linear dipolar resonators separated
by a few tens of nanometres [132]. Alternatively, the
electromagnetic interactions of proximate nanostructures have
been controlled using femtosecond laser pulses shaped
with respect to amplitude and temporal phase to produce
high local field intensities in desired locations around the
nanostructures [133, 134]. Nanofocusing has been proposed
using similar plasmonic interactions driven instead by
specially defined spatial phase profiles of superposed higher
order Hermite–Gaussian modes [135] or plane waves [136].

In the following we examine yet another nanofocusing
system based in particular on adiabatic nanofocusing on a
conical tip as a model device to illustrate the general far-field
to near-field RTC energy delivery system outlined in figure 2.
We examine the system in terms of its performance and
limitations and use it to discuss general metrics that may be
used to benchmark antenna designs.

7.1. SPP focusing using optical antennas

SPP nanofocusing on a conical metal tip was originally
proposed theoretically [25, 26, 137] and subsequently
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implemented experimentally [30, 39, 42, 44, 49, 138, 139].
The topology of the regularly tapered 3D conical waveguide
is unique in that it possesses only a single structural
discontinuity at the very apex, minimizing opportunities for
scattering losses. The gradual taper allows for a continuous
adiabatic SPP mode transformation as the propagating SPP
experiences an increasing effective index of refraction with
decreasing cone radius. Associated with the increasing index
of refraction is a decrease in group velocity and decrease
in wavelength. This acts to compress the energy of the
SPP spatially in the longitudinal direction. Low-loss SPP
compression relies on a smooth geometrical transformation
satisfying the adiabatic condition ∂ � 1 where ∂ =
|d(kSPP)−1/dr | tan(θ) is the adiabatic parameter describing
the rate of change of the SPP wavevector with wire radius r
and tip half cone angle θ [30]. The narrowing cone also acts
as a mode filter, as only the radially symmetric m = 0 mode
can propagate all the way to the apex.

This technique has been implemented using electrochem-
ically etched conical gold tips as shown in figure 17(a) [39,
42, 49, 138, 139]. To excite SPPs, a grating was cut into the
surface of the tip shaft as a coupling element using focused
ion beam (FIB) milling [81]. At the tip apex, the adiabatic
condition ultimately breaks down and the energy from the
SPPs is radiated in the form of a dipolar nanoemitter oriented
parallel to the tip axis [42]. The spot size of this emitter was
measured as ∼20 nm (FWHM) using s-SNOM.

Antenna-to-load coupling of the nanofocused point
dipole of the tip to a molecular dipole load [49] and silicon
nanocrystal [138] was demonstrated in tip-enhanced Raman
spectroscopy. The small emitter size and nonlocal grating
excitation mechanism were shown to allow for nanometre
spatially selective excitation and to substantially suppress
unwanted background signal.

In field localization techniques that utilize the sculpted
temporal phase of short pulses to drive coherent oscillations
on plasmonic structures, the waveforms of the pulses
are constrained by the interference requirements, allowing
for spatial confinement, but not arbitrary temporal pulse
shaping [133, 134]. Simultaneous control of the spatial and
temporal profile of picosecond pulses has been achieved by
shaping the spatial phase of the light propagating through a
complex medium [140]. However, in both of these methods
the temporal or spatial shaping is sample dependent. The
conical nanoantenna concept separates spatial and temporal
control of the optical field, allowing for arbitrary temporal
waveform generation at the apex nanoemitter, decoupled from
the sample geometry and spatial or temporal phase constraints
inherent in other specific field localization techniques. The
pulse spectral phase is defined prior to grating illumination
using a pulse shaper and optimized via a multiphoton
intrapulse interference phase scan (MIIPS) algorithm, as
shown in figure 17(b) [44]. The corresponding tip emissions at
the fundamental and second harmonic frequencies are shown
in figure 17(c) and the reconstructed optical waveform of the
tip emission with 16 fs duration as an example for a short
pulse is shown in figure 17(d). The ability to generate arbitrary
waveforms is limited only by the spectral bandwidth that can
be coupled by the spatially chirped grating coupling element.

Figure 17. SPP nanofocusing. (a) A conical metal tip optical
antenna. The SPP nanofocusing tip demonstrates the three elements
of an optical antenna: collection, confinement, and delivery to a
load. Incident light is collected by a grating SPP coupler. The SPP
propagates towards the apex, experiencing adiabatic energy
compression with decreased waveguide radius. The SPP finally
emits radiation from a 20 nm sized spot at the cone apex. (b)
Nanofocusing of ultrafast pulses using the conical geometry. The
pulses emitted at the apex are defined by a pulse shaper with
feedback on the tip second harmonic generation emission allowing
for arbitrary ultrafast waveform control from a nanoscale emitter.
(c) Spectrum showing the fundamental and second harmonic light
emitted at the apex. (d) Reconstructed optical waveform of the
nanofocused ultrashort laser pulse with 16 fs duration. Adapted with
permission from [30]. Copyright 2012 American Chemical Society.

Nonadiabatic propagating SPP nanofocusing has been
demonstrated on wedges [141] and coplanar structures [142]
as shown in figure 18. These structures are useful in planar
geometries for feeding plasmonic waveguides or in situations
where a load can be precisely placed at the focus as
with metal–oxide–metal diodes [114]. However, they are
susceptible to significant scattering losses at edges and corners
and it has yet to be shown to what extent they can outperform
simpler geometries such as linear-coupled rods or bowties.

As an optical antenna, the conical SPP nanofocusing
structure has several advantages. Although the coupling
grating must be designed for a specific coupling wavelength
and bandwidth, the adiabatic mechanism is intrinsically
broadband. The structure permits the transmission and spatial
compression of ultrashort pulses, allowing the implementation
of this antenna design for time-resolved applications [44].
Also, the conical design is readily implemented as a scanning
probe ideal for, e.g., tip-enhanced Raman spectroscopy [49].
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Figure 18. Plasmonic nonadiabatic nanofocusing using an
antenna-coupled coplanar stripline in the mid-IR. Light incident on
the linear antenna (left) excites a travelling wave on the stripline. A
taper at the end of the line concentrates the light, creating a
nanofocused spot. Adapted with permission from [142]. Copyright
2011 by Macmillan Publishers Ltd: Nature Photonics.

However, this structure has limitations too. For one, the
waveguide propagation introduces loss. Moreover, while the
grating is a suitable receiver for far-field excitation and
capture, the grating coupler capture cross section is equivalent
to its physical cross section in contrast to, e.g., linear
antennas [6].

7.2. Antenna performance metrics

The example of the conical antenna highlights the need for
a way to systematically compare different antenna designs.
In particular, specific, broadly applicable performance metrics
would facilitate optimized engineering strategies.

Figure 19(a) shows several nanofocusing optical antenna
architectures including a spherical plasmonic particle, a
quantum system, a plasmonic bowtie, and a conical SPP
waveguide. Despite the different form factors, these all have
the same underlying functionality in receiving mode as shown
in figure 19(b). The three step RTC transformation process
is characterized by several parameters. Incident light of
intensity Iin is captured by a receiving element with receiving
cross section σr, which may be several times bigger than
the physical area Ar of the receiver. Each RTC step is
characterized by a power Pr, Pt, and Pc, respectively, and
an efficiency ηr = Pr/Pin = σr/Ar, ηt = Pt/Pr, and ηc =
Pc/Pr. Ohmic and radiative losses are accounted for by Rr,
Rt, and Rc, respectively. Breaking up the nanoscale energy
delivery function of the optical antenna into three parts allows
for the characterization and optimization of each section
individually.

Even so, a single performance metric describing the
entire conversion process from reception to load coupling can
be assigned as the total energy delivery efficiency given by

ηtot = ηcηt
σr

Ar
. (52)

Previously, the field enhancement of the optical antenna has
been used as a primary metric. The field enhancement can be
described in our current terminology as

F = |Et|
|E0|

=
�

It

Iin
=

�
Pt/At

Pin/Ar
(53)

where Et is the electric field at the end of the transformation
section, E0 is the free-space electric field, and It = c�0n|Et|2/2
is the intensity at the end of the transformation. At is the size

of the enhanced field region, defined as At = 4d1d2, where d1
and d2 are the half-widths at half-maximum of the intensity
of the enhanced field in the x- and y-directions, respectively,
as shown in figure 19(c). Field enhancement has been the
most commonly employed metric, yet it is incomplete. It is
sufficient when the source power is not the limiting factor,
which may be the case in some spectroscopy applications, but
is not the case in general and for most cases where optical
antenna designs are most needed to, e.g., enhance small
signals, or redefine emitter directivity. The total efficiency ηtot
may be advantageous over F as an overall performance metric,
because it takes into account the physical and effective size of
the antenna, as well as coupling efficiency to the load.

Some of the parameters embedded within these
performance metrics are easily accessible, such as the receiver
physical area Ar and incident intensity Iin. Others such as the
power after transformation Pt and the area of the focused
light At could be measured using special instrumentation
such as near-field microscopy [42, 142]. Field enhancement
F can be rewritten to shed light on the efficiencies as F2 =
ηrηtAr/At. ηc may be determined from, e.g., knowledge of
the radiative and nonradiative decay channels of the load and
careful measurement of its radiated power. We acknowledge
that some of these parameters may be difficult to access, but
the search for suitable measurement techniques is a desirable
research goal in itself.

8. Measuring antenna parameters at optical

frequencies

All three steps of the RTC process are associated with
evanescent fields that can shed light onto the respective
underlying RTC parameters. In this section we consider the
state of the art of antenna far-field and near-field measurement
methods. In particular, we focus on the near-field vector
network analyser (VNA), a tool capable of providing full
electromagnetic near-field information about an antenna with
nanometre scale spatial resolution.

Far-field measurements can provide information about
the interaction between an antenna and propagating light.
As one example, the relationship between device geometry
and resonant frequency can be measured using visible and
IR transmission or extinction spectroscopy [92–94, 143,
144]. Second, as in the RF, the emission direction of
optical antennas can be controlled, promising enhanced
detection of, e.g., quantum emission [145]. The directivity
of antenna-coupled molecular emission [47] and Yagi–Uda
antennas operating at optical frequencies [146] has been
measured using high numerical aperture optical microscopy.
Third, field enhanced regions near plasmonic particles where
nanoloads can be located can be identified by imaging the
enhanced region’s point spread function using two-photon
photoluminescence [96, 147, 148] or nonlinear response [121,
122], though the imaging resolution can still be limited by
diffraction to a few hundred nanometres. In the infrared,
antenna-coupled bolometers have been used to measure the
polarization response [149] or capture efficiency of antennas
as a function of frequency and angle of incidence of an
excitation beam [34, 35].
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Figure 19. Comparing performance of optical antennas. (a) Optical antennas in different forms including a plasmonic dipole, a two-level
quantum system, a plasmonic bowtie, and a surface plasmon nanofocusing element. (b) A generalized schematic diagram of the
three-component receiving antenna including reception, transformation, and coupling to a nanoload. Important parameters of this process
include the receiver cross section σr = Pr/Iin, the receiving, transforming, and coupling efficiencies ηr, ηt, and ηc, respectively, and the
power at the end of each stage Pr, Pt, and Pc. Power losses at each stage are indicated as Rr, Rt, and Rc. (c) Nanofocus area At is evaluated
using the half-power distances d1 and d2 associated with the decay in x̂ and ŷ, respectively, as At = 4d1d2.

Electronic techniques can facilitate the extraction
of spatially detailed information required to optimize
nanoparticle geometry for a targeted near-field profile.
For example, electron energy loss spectroscopy (EELS)
implemented in a scanning transmission electron microscope
has been used to characterize plasmonic field enhancement
with nanometre resolution [106]. Photocurrent measurements
have been used to identify and quantify locally enhanced
fields [150]. Cathodoluminescence has been used to
create monochromatic emission maps of silver nanoprisms,
resolving the plasmon mode on a length scale of 25 nm [151].
Photoemission electron microscopy (PEEM) delivers high
spatial and temporal resolution, allowing for, e.g., the
measurement of the temporally resolved plasmonic response
of a multi-element metallic nanostructure [134, 152]. Optical
near-field techniques can offer complementary information
about the local electric field magnitude and phase with
nanometre spatial resolution allowing one to correlate details
of the field with nanometre scale geometrical features. These
techniques can be used to image plasmonic resonances. A
short review of plasmonic resonance imaging methods can be
found in [152].

In order to achieve optical resolution below the
diffraction limit, one must interrogate the sample of interest
in its near-field before evanescent field components associated
with high spatial frequency decay significantly. Scanning
near-field optical microscopy (SNOM) is a scanning probe
technique used to measure optical fields with resolution below
the diffraction limit. It can be divided into two main schemes.
The first uses light transmission through an aperture often
at the tip of a pulled optical fibre [153–155]. The other,
so-called apertureless or scattering-type SNOM (with the
corresponding equivalent appellations a-SNOM or s-SNOM),

utilizes the sharp apex of a scanning probe tip (e.g. an atomic
force microscope tip) to interrogate the near-field, scattering
the light to a detector [156–159]. In both modes of operation,
the probe is held in close proximity to the sample by force
feedback. The tip–sample region is illuminated by an external
light source either through the tip (in the case of SNOM),
through the sample, or through free space, typically focused
by a lens or mirror. Nanometre spatial imaging resolution is
achieved by collecting or scattering signal light from only
the region near the probe tip. In aperture based SNOM this
presents a trade-off between optical throughput and imaging
resolution, which are both largely defined by the aperture
size. The resolution of s-SNOM, on the other hand, is limited
only by the tip dimensions, with typical curvature at the
apex of ∼10 nm in radius [158–160]. Moreover, lifting the
requirement for transmission through optical fibres, s-SNOM
can be implemented with light frequencies from microwave
through optical [161, 162].

SNOM in both its operating modes has been very useful
for learning about the resonant modes of plasmonic antennas.
It has been used to measure antenna modes in the visible [12]
and infrared [97–99], including higher order plasmonic
resonances [85], coupling between antennas and nanowire
waveguides [113], nanofocusing and field enhancement [142],
dark and bright modes of plasmonic metamolecules [163] and
amplitude and phase of the different elements of an optical
Yagi–Uda antenna [164], for example.

9. The near-field vector network analyser

While all of the techniques discussed above provide valuable
information about optical antennas, full electromagnetic
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characterization capabilities comparable to those available for
RF antennas are still being developed. New tools are required
for routine characterization of antenna parameters such as
input impedance, current distribution, local magnetic field,
and local electric field.

In conventional measurement of RF device electromag-
netic parameters, the magnitude and phase of the potential at
the input of a scanning probe antenna, typically a small dipole
or loop, is measured using a vector network analyser (VNA)
or a spectrum analyser with a known reference frequency.
The probe acts as the receiver with the VNA measuring in
transmission mode [165]. The probe is scanned in the volume
around the antenna under test (see figure 21(a)). The received
signal is related to the electric or magnetic field amplitude
and phase at the location of the probe. The polarization of the
fields can be measured by the selective orientation of the probe
dipole. These types of scanning microwave probe system have
been implemented to measure conductivity of stratified media
and to probe subsurface features [166].

Extending this technique to optical frequencies would
be very helpful for optical antenna engineering. Notably,
one need not gain direct access to each individual EM
parameter in order to gain a full understanding of the
electronic nature of a plasmonic antenna. This is important
because, while the electric field is readily accessible, as will
be demonstrated below, the optical magnetic field is somewhat
more difficult to access experimentally due to the weaker
Lorentz force associated with the magnetic light–matter
interaction, compared to the Coulomb interaction. The electric
vector field E and magnetic field H of the time-varying optical
electromagnetic wave are related by the Maxwell–Faraday
equation.

H(r) = − i
ωµ0

∂B(r)

∂t
= i

ωµ0
∇ × E(r). (54)

Here we use the constitutive relation B = µ0H and the fact
that the time derivative of a time-harmonic wave can be
represented instead as a multiplication by iω where ω is
the frequency of the wave. Similarly, the Maxwell–Ampère
equation links E and H to the current density J as

∇ × B(r) = µ0

�
J + �0

∂E(r)

∂t

�
. (55)

Thus if one knows the precise electric field in great detail, the
other electromagnetic parameters may also be determined.

9.1. Dipole current density recovery

Full knowledge of the electric field distribution allows for the
determination of current density as described here for a linear
dipole antenna. Any source current J(r) for electromagnetic
fields can be considered as composed of a superposition
of point currents with the resulting E(r) and H(r) fields
generated by integrating over all the sources in a volume
V [73],

E(r) = E0(r) + iωµ0µ

�

V

↔
G (r, r

�)j(r�) dV � (56)

H(r) = H0(r) +
�

V

�
∇×

↔
G (r, r

�)
�

j(r�) dV � (57)

with the homogeneous solutions of the wave equation E0(r)

and H0(r). Thus the current represents the fundamental source
of the resulting EM fields. The dyadic Green’s function relates
the field at position r to the source current at position r

� and it
is given by

↔
G (r, r

�) =
�

↔
I + 1

k2 ∇∇
�

e±ik|r−r
�|

4π |r − r�| (58)

where
↔
I is the unit dyad. Although the constitution of fields

from current source elements is straightforward, the reverse
problem, namely determining the current source elements
from the fields, is more complicated. It has been worked out
previously, however [9], as discussed next.

9.1.1. Hallén’s integral equation. To solve for the current
density distribution on a linear conductor, given the electric
near-field, one may turn to the vector potential as an
intermediate parameter. The advantage of using the vector
potential instead of the electric field to solve for the current
density distribution is that each component of the current
density distribution results in a vector potential component
in the same coordinate. That is, an x̂-oriented source current
Jx = J · x̂ results in an x̂-oriented vector potential, but results
in an electric or magnetic field with x̂, ŷ, and ẑ components in
general [70]. The vector potential A(r) is defined with

B(r) = ∇ × A(r), (59)

and the Lorenz gauge,

∇ · A(r) = iωµ�φ(r). (60)

The quantity φ(r) is the scalar potential, providing an
alternative form of the EM fields in an infinite medium,

E(r) = iωA(r) − ∇φ(r), (61)

H(r) = 1
µ0µr

∇ × A(r). (62)

With the potential functions fully defined, the vector potential
is related to the current through the Helmholtz equation,

[∇2 + k2]A(r) = −µJ(r) (63)

The distribution of axial current is independent of the
shape of the antenna cross section if the maximum dimension
is small compared with the wavelength [70]. As an example,
the width of the f0 ≈ 30 THz antenna studied in [167] is about
λ/70. Approximating the current density J(r) as a line current
flowing in the ŷ direction, the local current I(y�) is related to
the vector potential at the surface of the antenna. The solution
to the Helmholtz equation is

Ay(y) = µ

4π

� L/2

−L/2
I(y�)G(y − y�) dy�. (64)

Then, with the relation between Ay and Ey,
�

∂2

∂y
+ k2

�
Ay(y) = −iωµ�Ey(y), (65)
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the solution for the current is determined directly from the
measured electric near-field antenna-parallel component Ey
by solving Hallén’s integral equation,

µ0

4π

� L/2

−L/2
I(y�)G(y − y�) dy� = iωµ�(∂2

y + k2)−1Ey(y) (66)

where L is the antenna length in wavelengths, k2 = ω2/µ�,
and G(y − y�) = eikR/(4πR), is the reduced thin wire kernel
with R =

�
(y − y�)2 [6, 9, 70]. This equation can be solved

numerically by the method of moments [9].
In a general formulation of the method of moments, the

desired quantity g is broken up into N segments along the
solution geometry, each with a coefficient an. The equation of
interest (e.g. the integral equation here) is reformulated with
the discrete elements as [6]

N�

n=1

anF(gn) = hm (67)

where F is a linear operator and h is the known quantity with
m = 1, 2, 3, . . . , N elements. Each gn takes the form of a
basis function (pulse, triangle, sinusoid, etc) with unknown
amplitude an. The basis function is chosen, and the system of
linear equations is solved for the quantities an.

9.2. Vector field measurements

Using Maxwell’s equations, the time-dependent THz electric
field, magnetic field, and Poynting vectors of a slit array
were determined in the near-field using Fourier transform
imaging [168]. In this method, the time domain transients
corresponding to two orthogonal (Ex and Ez) electric field
vector components in the plane perpendicular to the sample
surface were measured by electro-optic sampling. The
spectral amplitude and phase at each pixel above an array
of slits was determined by Fourier transform analysis of the
temporal transients. In this way, the electric field was fully
characterized, allowing for calculation of the magnetic field
and Poynting vectors. Figure 20 shows the electric field in
the x–z plane and the corresponding magnetic field at 1 THz
using this technique. A similar approach was demonstrated
at λ = 660 nm to measure the vector distributions of Bessel
beams, but the electric field components were measured in
a plane parallel to a sample surface, not perpendicular to
it [169]. The temporal evolution of the vector components in
the volume away from the sample plane could be extrapolated
numerically to determine the complete 3D field distribution.

Full electromagnetic characterization capabilities can be
extended to the optical regime by taking inspiration from
RF design tools. Figure 21(a) shows a schematic diagram
of the VNA being used to measure the near-fields of an
antenna under test using a small probe antenna as discussed
above. The key of this technique is the ability to measure
the fields with amplitude, phase, and vector orientation.
s-SNOM, mentioned above as a technique for imaging
resonant modes of plasmonic particles, is also capable of
measuring amplitude, phase, and vector orientation. As shown
in figure 21(b), a portion of excitation light is redirected for

Figure 20. Measured full vectorial representation of transmission
through a slit. Two orthogonal electric field components in the x–z
plane fully define the electromagnetic character of the transmitted
light. The magnetic field vectors are then deduced using Maxwell’s
equations. Reprinted with permission from [168]. Copyright 2007
Optical Society of America.

use as a phase reference. Near-field light is scattered by the
probe tip to the detector. The interference signal between
the tip-scattered light and the reference contains phase and
amplitude information. It can thus be considered the optical
analogue of the RF VNA, or the nano-optical VNA [167].

In early vector imaging efforts, a gold nanoparticle on a
fibre probe tip was used to scatter near-field light to a detector.
The near-field vector angle, but not direction, of elliptically
polarized light could be deduced [170]. Later, s-SNOM was
used to measure the electric vector distribution of the field
of aperture bowtie antennas, demonstrating the capability of
measuring the full phase-resolved electric field [171].

Despite the weaker magnetic force, efforts have also been
made to directly measure the optical magnetic field H(r)
with scanning probe tips. The magnetic field intensity was
measured in the optical near-field via excitation of a ring
plasmon in gold coated probe tips [172]. A measurement of
H(r) has also been reported using a split-ring resonator at the
end of a scanning probe tip [173]. These types of tip have
yet to be implemented for scanning optical antennas, as both
their fabrication and the resulting signal interpretation, can be
challenging.

The nano-optical VNA was used to determine the electric
field, magnetic field, and current density distributions of
a linear-coupled dipole antenna [167]. Figure 21 shows a
scanning electron microscope image of a linear coupled-
dipole antenna (c) and its electric vector near-field measured
by s-SNOM (d) with amplitude and vector orientation
indicated by the arrows and signal magnitude |S| = (S2

y +
S2

z )
1/2 indicated by the colorbar. An inset shows the rotation

of the vector field at the large field gradient near the antenna
gap of ≈80 nm associated with a high field enhancement
factor of about 30. Access to arbitrary vector components
was achieved by nano-engineering the probe tip for increased
scattering sensitivity to tip-perpendicular field components.
Equation (54) allowed the determination of the corresponding
magnetic field and Hallén’s integral equation was used to
obtain J directly from E as shown in figures 21(e) and (f) for
experiment and theory, respectively.

The result for the current shows a two-sided, nearly
symmetric distribution centred on each dipole as expected
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Figure 21. Vector near-field imaging of optical antennas for determination of electromagnetic parameters. (a) A schematic diagram of the
RF vector network analyser capable of measuring antenna near-fields with amplitude and phase information (dipole probe inset used with
permission from [165], copyright 2007 IEEE). (b) The parallel implementation of (a) at optical frequencies using s-SNOM. (c) SEM image
of a gold linear coupled-dipole optical antenna resonant at λ0 = 10.6 µm. (d) Vector near-field as measured by a phase sensitive s-SNOM
based nano-optical vector network analyser. Colour indicates field magnitude. Inset: Close-up view of field orientation near the gap at
y = 0 µm. (e) Normalized current magnitude determined solving Hallén’s integral equation using experimental near-field data. (f) Current
calculated from theory. The current distribution exhibits a peak shift (red or blue dashed lines) from the geometrical centre of the rod (black
dashed lines) towards the gap, indicating coupling between the rods.

to first order for this geometry. The peak shift seen in
the current distribution in figure figure 21(c) and the
corresponding theory 21(d) results from interdipole antenna
coupling associated with Coulomb interactions across the gap.

This example demonstrates that if E is known in sufficient
detail, one may calculate the associated H and J ∝ I.
Though simplified here for the case of a linear antenna
geometry, these operations are general and can readily be
extended for the determination of magnetic field and current
from 3D near-field data for arbitrary antenna geometries.
This demonstrates the implementation of phase-resolved
s-SNOM as a VNA for nano-optical applications, bringing
this important RF design tool to the optical regime.

In an extension of this instrument’s capabilities, heat
dissipation can also be characterized. Loss of energy to heat
can be detrimental to optical antenna functionality, as each
RTC building block suffers from it with its own different loss
mechanism. s-SNOM using vector imaging techniques can
be used to measure the thermal near-field of an antenna, and
thereby acquire local information about the heat dissipation
throughout the structure [174].

10. Conclusion and outlook

In summary, we have reviewed the physical basis of the
light–matter interaction at the transition from the RF to optical
regime, discussing the extension of antenna theory from the
RF to optical as is required for the development of optical
antenna design strategies. We gave an overview of RF antenna

theory including resonance and impedance and discussed the
range and limitations in its applicability for optical antenna
design. We have discussed impedance at optical frequencies
as it is understood for optical gap antennas as well as a local
density of states formulation that has been suggested for loads
or sources in arbitrary locations in the antenna near-field.

We have generalized the ideal antenna–load interaction
through a transformation process composed of three main
steps: (i) reception of far-field light and subsequent excitation
of an extrinsic antenna resonance, (ii) transformation and
localization of the captured energy, and (iii) near-field
coupling to a quantum load, comprising the RTC scheme.

This general scheme was illustrated as an example
by application to a conical SPP focusing optical antenna.
Motivated by the need for a tool for systematic comparison
between different optical antenna architectures, we have
proposed a performance metric for maximizing conversion
efficiency from far-field light to a nanolocalized excitation
at a load. The overall efficiency can be decomposed into
parameters describing the power and efficiency of each
building block of the RTC system, allowing for individual
characterization and optimization of each subfunction of the
antenna. While new measurement methods will help measure
the performance of optical antennas, many of the metric
parameters can already be accessed using, e.g., a near-field
vector network analyser. Towards this end, we discussed
the full near-field EM characterization of an infrared optical
antenna.

We hope this review will give a perspective to the
discussion of antenna–load interactions at optical frequencies
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in terms of ideas that can be carried over from RF antenna
engineering as well as new design strategies related to the
quantum nature of nanoantennas and nanoloads. We have
identified several areas where further investigation would
benefit optical antenna design. Specifically, the radiative
and nonradiative decay channels associated with quantum
emitter–antenna coupling should be examined to determine
how they relate to different geometries and materials. The
density of states formalism and validity of the Purcell factor
analogy for optical antennas should be verified experimentally
for spheres as well as more sophisticated geometries.
LDOS impedance concepts should be formulated for new
optical antenna geometries beyond the sphere such as the
conical waveguide, linear dipole, and patch antenna. Finally,
experimental techniques for antenna characterization should
be developed for routine analysis.
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28 1266–74
[106] Duan H, Fernandez-Dominguez A I, Bosman M,

Maier S A and Yang J K W 2012 Nano Lett. 12 3334–8
[107] Burke P J, Li S and Yu Z 2006 IEEE Trans. Nanotechnol.

5 314–34
[108] Berthelot J et al 2009 Nano Lett. 9 3914–21
[109] Aizpurua J, Bryant G W, Richter L J and

Garcı́a de Abajo F J 2005 Phys. Rev. B 71 235420
[110] Pohl D W, Rodrigo S G and Novotny L 2011 Appl. Phys.

Lett. 98 023111
[111] Maksymov I S, Miroshnichenko A E and Kivshar Y S 2011

Tunable plasmonic Yagi-Uda nanoantenna International
Workshop on Nonlinear Photonics (NLP) (Kharkov)
pp 1–3
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